Asymptotic sets in networks of coupled quadratic nodes

[1]  R. Roeder A dichotomy for Fatou components of polynomial skew products , 2010, 1005.2252.

[2]  B. Mandelbrot FRACTAL ASPECTS OF THE ITERATION OF z →Λz(1‐ z) FOR COMPLEX Λ AND z , 1980 .

[3]  Hiroki Sumi,et al.  Semi-hyperbolic fibered rational maps and rational semigroups , 2005, Ergodic Theory and Dynamical Systems.

[4]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[5]  Olaf Sporns,et al.  Graph Theory Methods for the Analysis of Neural Connectivity Patterns , 2003 .

[6]  Jesse Geneson,et al.  Fixed Points of Competitive Threshold-Linear Networks , 2018, Neural Computation.

[7]  G. Julia Mémoire sur l'itération des fonctions rationnelles , 1918 .

[8]  P. Fatou,et al.  Sur les équations fonctionnelles , 1920 .

[9]  Mark H. Holmes,et al.  Model and Analysis for the Onset of Parkinsonian Firing Patterns in a Simplified Basal Ganglia , 2019, Int. J. Neural Syst..

[10]  Fatou Components of Attracting Skew-Products , 2015, Journal of geometric analysis.

[11]  M. Jonsson Dynamics of polynomial skew products on ${\bf C}^2$ , 1999 .

[12]  Bodil Branner,et al.  The iteration of cubic polynomials Part II: patterns and parapatterns , 1992 .

[13]  Yongcheng Yin,et al.  D S ] 2 A ug 2 00 6 Proof of the Branner-Hubbard conjecture on Cantor Julia sets Weiyuan , 2008 .

[14]  M. Lyubich Dynamics of quadratic polynomials, I–II , 1997 .

[15]  Information capacity and pattern formation in a tent map network featuring statistical periodicity. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  D. Sullivan,et al.  On the dynamics of rational maps , 1983 .

[17]  G. Ermentrout,et al.  Parabolic bursting in an excitable system coupled with a slow oscillation , 1986 .

[18]  Hiroki Sumi,et al.  Random complex dynamics and semigroups of holomorphic maps , 2008, 0812.4483.

[19]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[20]  Grzegorz Swiatek,et al.  Generic hyperbolicity in the logistic family , 1997 .

[21]  Mark Comerford Hyperbolic non-autonomous Julia sets , 2006, Ergodic Theory and Dynamical Systems.

[22]  J. Peter Matelski,et al.  The Dynamics of 2-Generator Subgroups of PSL(2, ℂ) , 1981 .

[23]  Heinemann Stefan-M JULIA SETS OF SKEW PRODUCTS IN C2 , 1998 .

[24]  Anca Rǎdulescu,et al.  Real and complex behavior for networks of coupled logistic maps , 2016, 1604.04880.

[25]  Olaf Sporns,et al.  The Non-Random Brain: Efficiency, Economy, and Complex Dynamics , 2010, Front. Comput. Neurosci..

[26]  Hiroki Sumi Random complex dynamics and devil's coliseums , 2011 .

[27]  R M Borisyuk,et al.  Dynamics and bifurcations of two coupled neural oscillators with different connection types , 1995, Bulletin of mathematical biology.

[28]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[29]  Nicolas Brunel,et al.  Firing Rate of the Noisy Quadratic Integrate-and-Fire Neuron , 2003, Neural Computation.

[30]  J. Milnor,et al.  Cubic Polynomial Maps with Periodic Critical Orbit, Part I , 2009, 0910.1866.

[31]  Sergio Oscar Verduzco-Flores,et al.  Nonlinear network dynamics under perturbations of the underlying graph. , 2014, Chaos.

[32]  Hiroki Sumi,et al.  Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products , 2001, Ergodic Theory and Dynamical Systems.