Dynamic Docking of Conformationally Constrained Macrocycles: Methods and Applications.

Many natural products consist of large and flexible macrocycles that engage their targets via multiple contact points. This combination of contained flexibility and large contact area often allows natural products to bind at target surfaces rather than deep pockets, making them attractive scaffolds for inhibiting protein-protein interactions and other challenging therapeutic targets. The increasing ability to manipulate such compounds either biosynthetically or via semisynthetic modification means that these compounds can now be considered as starting points for medchem campaigns rather than solely as ends. Modern medchem benefits substantially from rational improvements made on the basis of molecular docking. As such, docking methods have been enhanced in recent years to deal with the complicated binding modalities and flexible scaffolds of macrocyclic natural products and natural product-like structures. Here, we comprehensively review methods for treating and docking these large macrocyclic scaffolds and discuss some of the resulting advances in medicinal chemistry.

[1]  Stephen F Martin,et al.  Thermodynamic and structural effects of conformational constraints in protein-ligand interactions. Entropic paradoxy associated with ligand preorganization. , 2009, Journal of the American Chemical Society.

[2]  W. Jiao,et al.  New Tripeptide‐Based Macrocyclic Calpain Inhibitors Formed by N‐Alkylation of Histidine , 2012, Chemistry & biodiversity.

[3]  R. Bazzo,et al.  NMR Analysis of Molecular Flexibility in Solution: A New Method for the Study of Complex Distributions of Rapidly Exchanging Conformations. Application to a 13-Residue Peptide with an 8-Residue Loop , 1995 .

[4]  Glen E. Kellogg,et al.  Hydrophobicity: is LogPo/w more than the sum of its parts? , 2000 .

[5]  N. Fujii,et al.  Molecular modeling study of cyclic pentapeptide CXCR4 antagonists: new insight into CXCR4-FC131 interactions. , 2012, Bioorganic & medicinal chemistry letters.

[6]  Igor V. Filippov,et al.  PDB Ligand Conformational Energies Calculated Quantum-Mechanically , 2012, J. Chem. Inf. Model..

[7]  Matthew P. Jacobson,et al.  A Molecular Mechanics Approach to Modeling Protein-Ligand Interactions: Relative Binding Affinities in Congeneric Series , 2011, J. Chem. Inf. Model..

[8]  F. D. Leeuw,et al.  The relationship between proton-proton NMR coupling constants and substituent electronegativities—I : An empirical generalization of the karplus equation , 1980 .

[9]  Jesús Jiménez-Barbero,et al.  The bound conformation of microtubule-stabilizing agents: NMR insights into the bioactive 3D structure of discodermolide and dictyostatin. , 2008, Chemistry.

[10]  Wolfgang Brandt,et al.  Chemoinformatic analysis of biologically active macrocycles. , 2010, Current topics in medicinal chemistry.

[11]  Ian Collins,et al.  Macrocycles in new drug discovery. , 2012, Future medicinal chemistry.

[12]  J. Trent,et al.  Stereoselective synthesis of [L-Arg-L/D-3-(2-naphthyl)alanine]-type (E)-alkene dipeptide isosteres and its application to the synthesis and biological evaluation of pseudopeptide analogues of the CXCR4 antagonist FC131. , 2005, Journal of medicinal chemistry.

[13]  C. Curti,et al.  Targeting αvβ3 Integrin: Design and Applications of Mono- and Multifunctional RGD-Based Peptides and Semipeptides , 2010 .

[14]  A. Joachimiak,et al.  CRYSTAL STRUCTURE OF THE EXTRACELLULAR SEGMENT OF INTEGRIN ALPHA VBETA3 BOUND TO MN2 , 2002 .

[15]  Elizabeth Yuriev,et al.  Challenges and advances in computational docking: 2009 in review , 2011, Journal of molecular recognition : JMR.

[16]  Stephen P. Hale,et al.  The exploration of macrocycles for drug discovery — an underexploited structural class , 2008, Nature Reviews Drug Discovery.

[17]  L. Johnson,et al.  Structure-based design of cyclin-dependent kinase inhibitors. , 2002, Pharmacology & therapeutics.

[18]  C. E. Peishoff,et al.  A critical assessment of docking programs and scoring functions. , 2006, Journal of medicinal chemistry.

[19]  G. Bifulco,et al.  Synthesis of new mono and bis amides projected as potential histone deacetylase (HDAC) inhibitors , 2010 .

[20]  W. C. Still,et al.  The multiple minimum problem in molecular modeling. Tree searching internal coordinate conformational space , 1988 .

[21]  H. Kolmar,et al.  Between two worlds: a comparative study on in vitro and in silico inhibition of trypsin and matriptase by redox-stable SFTI-1 variants at near physiological pH. , 2012, Organic & biomolecular chemistry.

[22]  M. Saviano,et al.  Solid state and solution conformation of [Ala7]-phalloidin: a synthetic phallotoxin analogue. , 2001, Chemistry.

[23]  Leslie A Kuhn,et al.  Modeling correlated main‐chain motions in proteins for flexible molecular recognition , 2004, Proteins.

[24]  Yiwu Yao,et al.  Biological evaluation of new largazole analogues: alteration of macrocyclic scaffold with click chemistry. , 2013, ACS medicinal chemistry letters.

[25]  M. Katharine Holloway,et al.  Molecular modeling based approach to potent P2-P4 macrocyclic inhibitors of hepatitis C NS3/4A protease. , 2008, Journal of the American Chemical Society.

[26]  Siegfried S. F. Leung,et al.  Cell-permeable cyclic peptides from synthetic libraries inspired by natural products. , 2015, Journal of the American Chemical Society.

[27]  S. Ōmura,et al.  Molecular modeling of human acidic mammalian chitinase in complex with the natural-product cyclopentapeptide chitinase inhibitor argifin. , 2009, Bioorganic & medicinal chemistry.

[28]  M. Karplus,et al.  The HSP90 binding mode of a radicicol-like E-oxime determined by docking, binding free energy estimations, and NMR 15N chemical shifts. , 2009, Biophysical chemistry.

[29]  F. Ding,et al.  Discrete molecular dynamics , 2012 .

[30]  L. Gentilucci,et al.  Antiangiogenic effect of dual/selective alpha(5)beta(1)/alpha(v)beta(3) integrin antagonists designed on partially modified retro-inverso cyclotetrapeptide mimetics. , 2009, Journal of medicinal chemistry.

[31]  D. Fairlie,et al.  Macrocyclic Peptidomimetics Forcing Peptides into Bioactive Conformations , 1995, Current Medicinal Chemistry.

[32]  Matthew P Jacobson,et al.  Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. , 2006, Journal of the American Chemical Society.

[33]  R. Lokey,et al.  Form and function in cyclic peptide natural products: a pharmacokinetic perspective. , 2013, Current topics in medicinal chemistry.

[34]  J. Snyder,et al.  A Test of the Single-Conformation Hypothesis in the Analysis of NMR Data for Small Polar Molecules: A Force Field Comparison , 1999 .

[35]  M. James,et al.  Lowering the entropic barrier for binding conformationally flexible inhibitors to enzymes. , 1998, Biochemistry.

[36]  Laura Belvisi,et al.  Determination of the binding epitope of RGD-peptidomimetics to αvβ3 and α(IIb)β3 integrin-rich intact cells by NMR and computational studies. , 2013, Organic & biomolecular chemistry.

[37]  M. Civera,et al.  Cyclic isoDGR peptidomimetics as low-nanomolar αvβ3 integrin ligands. , 2013, Chemistry.

[38]  Shuichi Hirono,et al.  Camdas: An automated conformational analysis system using molecular dynamics , 1997, J. Comput. Aided Mol. Des..

[39]  Nicolas Foloppe,et al.  Tackling the conformational sampling of larger flexible compounds and macrocycles in pharmacology and drug discovery. , 2013, Bioorganic & medicinal chemistry.

[40]  M. Saraste,et al.  FEBS Lett , 2000 .

[41]  A. Pupi,et al.  Morpholine-based RGD-cyclopentapeptides as alphavbeta3/alphavbeta5 integrin ligands: role of configuration towards receptor binding affinity. , 2009, Bioorganic & medicinal chemistry.

[42]  C. Heinis,et al.  Drug discovery: tools and rules for macrocycles. , 2014, Nature chemical biology.

[43]  Robert C. Liddington,et al.  Faculty Opinions recommendation of Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. , 2002 .

[44]  D. Case,et al.  Rescoring docking hit lists for model cavity sites: predictions and experimental testing. , 2008, Journal of molecular biology.

[45]  J. Janin Assessing predictions of protein–protein interaction: The CAPRI experiment , 2005, Protein science : a publication of the Protein Society.

[46]  Hongxing Lei,et al.  Improved sampling methods for molecular simulation. , 2007, Current opinion in structural biology.

[47]  Xiaoming Xu,et al.  The Assembly-Inducing Laulimalide/Peloruside A Binding Site on Tubulin: Molecular Modeling and Biochemical Studies with [3H]Peloruside A , 2010, J. Chem. Inf. Model..

[48]  Ross C. Walker,et al.  An overview of the Amber biomolecular simulation package , 2013 .

[49]  D. Abraham,et al.  Hydrophobicity: is LogP(o/w) more than the sum of its parts? , 2000, European journal of medicinal chemistry.

[50]  Vincent Zoete,et al.  Design, synthesis, and biological evaluation of HSP90 inhibitors based on conformational analysis of radicicol and its analogues. , 2005, Journal of the American Chemical Society.

[51]  Raymond E. Moellering,et al.  Direct inhibition of the NOTCH transcription factor complex , 2009, Nature.

[52]  Xiaoqin Zou,et al.  Advances and Challenges in Protein-Ligand Docking , 2010, International journal of molecular sciences.

[53]  Woody Sherman,et al.  ConfGen: A Conformational Search Method for Efficient Generation of Bioactive Conformers , 2010, J. Chem. Inf. Model..

[54]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[55]  Roy Bickerstaffe,et al.  Molecular modeling: a search for a calpain inhibitor as a new treatment for cataractogenesis. , 2011, Journal of medicinal chemistry.

[56]  Feng,et al.  Synthesis of a New , 2001 .

[57]  Andrei K. Yudin,et al.  Macrocycles: lessons from the distant past, recent developments, and future directions , 2014, Chemical science.

[58]  M. Karplus,et al.  Asymmetric synthesis of pochonin E and F, revision of their proposed structure, and their conversion to potent Hsp90 inhibitors. , 2012, Chemistry.

[59]  M. Karplus Contact Electron‐Spin Coupling of Nuclear Magnetic Moments , 1959 .

[60]  M. Rosenkilde,et al.  Determination of the binding mode for the cyclopentapeptide CXCR4 antagonist FC131 using a dual approach of ligand modifications and receptor mutagenesis , 2014, British journal of pharmacology.

[61]  J. M. Ribeiro,et al.  Hydrolysis of the phosphoanhydride linkage of cyclic ADP‐ribose by the Mn2+‐dependent ADP‐ribose/CDP‐alcohol pyrophosphatase , 2009, FEBS letters.

[62]  G. Klebe,et al.  Development of new cyclic plasmin inhibitors with excellent potency and selectivity. , 2013, Journal of medicinal chemistry.

[63]  G. Dive,et al.  Unprecedented inhibition of resistant penicillin binding proteins by bis-2-oxoazetidinyl macrocycles , 2012 .

[64]  Paul Labute,et al.  LowModeMD - Implicit Low-Mode Velocity Filtering Applied to Conformational Search of Macrocycles and Protein Loops , 2010, J. Chem. Inf. Model..

[65]  Jonas Boström,et al.  Conformational energy penalties of protein-bound ligands , 1998, J. Comput. Aided Mol. Des..

[66]  H. Scheraga,et al.  Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids , 1983 .

[67]  Nir London,et al.  Sub‐angstrom modeling of complexes between flexible peptides and globular proteins , 2010, Proteins.

[68]  Laura Belvisi,et al.  Cyclic RGD peptidomimetics containing bifunctional diketopiperazine scaffolds as new potent integrin ligands. , 2009, Chemistry.

[69]  G. R. Famini,et al.  A computational study of solvent effects on the conformation of dopamine , 1992 .

[70]  A. Spitaleri,et al.  Use of metadynamics in the design of isoDGR-based αvβ3 antagonists to fine-tune the conformational ensemble. , 2011, Angewandte Chemie.

[71]  Edward W. Lowe,et al.  Computational Methods in Drug Discovery , 2014, Pharmacological Reviews.

[72]  Dianqing Sun,et al.  Macrocyclic Drugs and Synthetic Methodologies toward Macrocycles , 2013, Molecules.

[73]  David C Schriemer,et al.  Discovery and characterization of the laulimalide-microtubule binding mode by mass shift perturbation mapping. , 2010, Chemistry & biology.

[74]  S. Renner,et al.  Total synthesis of chondramide C and its binding mode to F-actin. , 2008, Angewandte Chemie.

[75]  Kevin M. D'Auria,et al.  Structural and dynamic determinants of protein-peptide recognition. , 2011, Structure.

[76]  S. Renner,et al.  Synthesis and Structure–Activity Correlation of a Brunsvicamide‐Inspired Cyclopeptide Collection , 2009, Chembiochem : a European journal of chemical biology.

[77]  Amos B. Smith,et al.  Interactions of Halichondrin B and Eribulin with Tubulin , 2011, J. Chem. Inf. Model..

[78]  A. Abell,et al.  Molecular modeling, synthesis, and biological evaluation of macrocyclic calpain inhibitors. , 2009, Angewandte Chemie.

[79]  Leslie A Kuhn,et al.  Protein unfolding: Rigidity lost , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[80]  J. Trent,et al.  Development of a linear type of low molecular weight CXCR4 antagonists based on T140 analogs. , 2006, Organic & biomolecular chemistry.

[81]  É. Marsault,et al.  Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. , 2011, Journal of medicinal chemistry.

[82]  H. Morita,et al.  Conformational Analysis of a Marine Antineoplastic Macrolide, Bryostatin 10. , 1996 .

[83]  J. Wood,et al.  Discovery of the macrocycle (9E)-15-(2-(pyrrolidin-1-yl)ethoxy)-7,12,25-trioxa-19,21,24-triaza-tetracyclo[18.3.1.1(2,5).1(14,18)]hexacosa-1(24),2,4,9,14(26),15,17,20,22-nonaene (SB1578), a potent inhibitor of janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) for the treatment of rheumatoid arthr , 2012, Journal of medicinal chemistry.

[84]  Elizabeth Yuriev,et al.  Latest developments in molecular docking: 2010–2011 in review , 2013, Journal of molecular recognition : JMR.

[85]  Anders Poulsen,et al.  Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3) , 2012, Journal of Computer-Aided Molecular Design.

[86]  Eric Sun,et al.  Structure-based design of Aurora A & B inhibitors , 2008, J. Comput. Aided Mol. Des..

[87]  J. Wood,et al.  Discovery of Kinase Spectrum Selective Macrocycle , 2011 .

[88]  J. Wood,et al.  Discovery of kinase spectrum selective macrocycle (16E)-14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene (SB1317/TG02), a potent inhibitor of cyclin dependent kinases (CDKs), Janus kinase 2 (JAK2), and fms-like tyrosine kinase- , 2012, Journal of medicinal chemistry.

[89]  A. Laio,et al.  Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science , 2008 .

[90]  Matthew P Jacobson,et al.  Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. , 2006, Journal of the American Chemical Society.

[91]  Richard W Roberts,et al.  mRNA display: ligand discovery, interaction analysis and beyond. , 2003, Trends in biochemical sciences.

[92]  Anders Poulsen,et al.  Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene (SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) inhibitor for the treatment of myelofibrosis and lympho , 2011, Journal of medicinal chemistry.

[93]  Dima Kozakov,et al.  How Proteins Bind Macrocycles , 2014, Nature chemical biology.

[95]  T. Kuzuhara,et al.  Anti-Influenza Activity of Marchantins, Macrocyclic Bisbibenzyls Contained in Liverworts , 2011, PloS one.

[96]  J. Snyder,et al.  Relationship among ligand conformations in solution, in the solid state, and at the Hsp90 binding site: geldanamycin and radicicol. , 2007, Journal of the American Chemical Society.

[97]  Horst Kessler,et al.  Receptor-bound conformation of cilengitide better represented by its solution-state structure than the solid-state structure. , 2014, Chemistry.

[98]  Christoph A. Sotriffer,et al.  Virtual screening : principles, challenges, and practical guidelines , 2011 .

[99]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[100]  W. Wooster,et al.  Crystal structure of , 2005 .

[101]  M. Teulade‐Fichou,et al.  Macrocyclic DNA-mismatch-binding ligands: structural determinants of selectivity. , 2010, Chemistry.

[102]  P. Dumy,et al.  Double threading through DNA: NMR structural study of a bis-naphthalene macrocycle bound to a thymine–thymine mismatch , 2012, Nucleic acids research.

[103]  H. Morita,et al.  Conformational analysis of a marine antineoplastic macrolide, bryostatin 10☆ , 1996 .

[104]  F. A. Neugebauer,et al.  Electrochemical oxidation and structural changes of 5,6-dihydrobenzo[c]cinnolines , 1996 .

[105]  Nir London,et al.  Can self‐inhibitory peptides be derived from the interfaces of globular protein–protein interactions? , 2010, Proteins.

[106]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[107]  Martin Lepšík,et al.  Assessing the accuracy and performance of implicit solvent models for drug molecules: conformational ensemble approaches. , 2013, The journal of physical chemistry. B.

[108]  Christopher R. Corbeil,et al.  Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go , 2008, British journal of pharmacology.

[109]  G. Marshall,et al.  A minimalistic 3D pharmacophore model for cyclopentapeptide CXCR4 antagonists , 2006, Biopolymers.

[110]  A. Olson,et al.  Rediocides A and G as Potential Antitoxins Against Cobra Venom , 2009, Chemistry & biodiversity.

[111]  N. Sigal,et al.  Cyclosporin A, FK-506, and Rapamycin: Pharmacologic Probes of Lymphocyte Signal Transduction , 1992 .

[112]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[113]  New cyclic RGD peptides: synthesis, characterization, and theoretical activity towards αvβ3 integrin , 2014 .

[114]  M. Rosenkilde,et al.  Rational design of conformationally constrained cyclopentapeptide antagonists for C-x-C chemokine receptor 4 (CXCR4). , 2012, Journal of medicinal chemistry.

[115]  M. Rudd,et al.  Discovery of MK-5172, a Macrocyclic Hepatitis C Virus NS3/4a Protease Inhibitor. , 2012, ACS medicinal chemistry letters.

[116]  T. Steinmetzer,et al.  A new strategy for the development of highly potent and selective plasmin inhibitors. , 2012, Journal of medicinal chemistry.

[117]  M. Steinmetz,et al.  Structural basis of microtubule stabilization by laulimalide and peloruside A. , 2014, Angewandte Chemie.

[118]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 in Complex with an Arg-Gly-Asp Ligand , 2002, Science.

[119]  Brian J. Smith,et al.  Stabilizing the pro-apoptotic BimBH3 helix (BimSAHB) does not necessarily enhance affinity or biological activity. , 2013, ACS chemical biology.

[120]  P. Charifson,et al.  Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. , 2004, Journal of medicinal chemistry.

[121]  G. Chang,et al.  An internal-coordinate Monte Carlo method for searching conformational space , 1989 .

[122]  S. Schreiber,et al.  Synthesis and conformation-activity relationships of the peptide isosteres of FK228 and largazole. , 2009, Journal of the American Chemical Society.

[123]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[124]  P. Blumberg,et al.  Molecular modeling, total synthesis, and biological evaluations of C9-deoxy bryostatin 1. , 2010, Angewandte Chemie.

[125]  Ming Lei,et al.  Sampling protein conformations and pathways , 2004, J. Comput. Chem..

[126]  T. Krahn,et al.  Structure-function relation of efomycines, a family of small-molecule inhibitors of selectin functions. , 2006, The Journal of investigative dermatology.

[127]  István Kolossváry,et al.  Low Mode Search . An Efficient , Automated Computational Method for Conformational Analysis : Application to Cyclic and Acyclic Alkanes and Cyclic Peptides , 1997 .

[128]  W. Setzer,et al.  Cembrene Diterpenoids: Conformational Studies and Molecular Docking to Tubulin , 2010 .

[129]  Charles L. Brooks,et al.  Detailed analysis of grid‐based molecular docking: A case study of CDOCKER—A CHARMm‐based MD docking algorithm , 2003, J. Comput. Chem..

[130]  A. Poulsen,et al.  Structure-based design of nitrogen-linked macrocyclic kinase inhibitors leading to the clinical candidate SB1317/TG02, a potent inhibitor of cyclin dependant kinases (CDKs), Janus kinase 2 (JAK2), and Fms-like tyrosine kinase-3 (FLT3) , 2012, Journal of Molecular Modeling.

[131]  Computer-aided rational molecular design of argifin-derivatives with increased inhibitory activity against chitinase B from Serratia marcescens. , 2009, Bioorganic & medicinal chemistry letters.

[132]  R. Kroemer Structure-based drug design: docking and scoring. , 2007, Current protein & peptide science.

[133]  J. Tuszynski,et al.  A unique mode of microtubule stabilization induced by peloruside A. , 2008, Journal of molecular biology.

[134]  J M Thornton,et al.  Multiple solution conformations of the integrin-binding cyclic pentapeptide cyclo(-Ser-D-Leu-Asp-Val-Pro-). Analysis of the (phi, psi) space available to cyclic pentapeptides. , 1996, European journal of biochemistry.

[135]  Nikolay V. Dokholyan,et al.  Identification and Rational Redesign of Peptide Ligands to CRIP1, A Novel Biomarker for Cancers , 2008, PLoS Comput. Biol..

[136]  David R. Liu,et al.  DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules. , 2004, Angewandte Chemie.