Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices

We built and measured the dynamical current versus time behavior of nanoscale niobium oxide crosspoint devices which exhibited threshold switching (current-controlled negative differential resistance). The switching speeds of 110 × 110 nm2 devices were found to be ΔtON = 700 ps and ΔtOFF = 2.3 ns while the switching energies were of the order of 100 fJ. We derived a new dynamical model based on the Joule heating rate of a thermally driven insulator-to-metal phase transition that accurately reproduced the experimental results, and employed the model to estimate the switching time and energy scaling behavior of such devices down to the 10 nm scale. These results indicate that threshold switches could be of practical interest in hybrid CMOS nanoelectronic circuits.

[1]  Young-soo Park,et al.  Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory , 2007 .

[2]  Özgür Türel,et al.  CrossNets: possible neuromorphic networks based on nanoscale components , 2003, Int. J. Circuit Theory Appl..

[3]  Sungyoul Choi,et al.  Erratum: “Electrical oscillations induced by the metal-insulator transition in VO2” [J. Appl. Phys. 107, 023702 (2010)] , 2010 .

[4]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[5]  M. Yamashita,et al.  Current oscillation originating from negative differential resistance in one-dimensional halogen-bridged nickel compounds , 2009 .

[6]  Sungyoul Choi,et al.  Electrical oscillations induced by the metal-insulator transition in VO2 , 2010 .

[7]  I-Ru Chen,et al.  Compact Thermal Model for Vertical Nanowire Phase-Change Memory Cells , 2009, IEEE Transactions on Electron Devices.

[8]  A. Pergament,et al.  Electroforming and Switching in Oxides of Transition Metals: The Role of Metal-Insulator Transition in the Switching Mechanism , 1996 .

[9]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[10]  P. M. Raccah,et al.  High‐speed high‐current field switching of NbO2 , 1977 .

[11]  H. L. Grubin,et al.  Analysis of an inhomogeneous bulk "S-shaped" negative differential conductivity element in a circuit containing reactive elements , 1973 .

[12]  Hyunsang Hwang,et al.  Co-Occurrence of Threshold Switching and Memory Switching in $\hbox{Pt}/\hbox{NbO}_{x}/\hbox{Pt}$ Cells for Crosspoint Memory Applications , 2012, IEEE Electron Device Letters.

[13]  K. L. Chopra,et al.  Current-controlled negative resistance in thin niobium oxide films , 1963 .

[14]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[15]  M. Shoga,et al.  Relaxation oscillations in NbO2 thin film switching devices , 1981 .

[16]  Melvin P. Shaw,et al.  Circuit Controlled Current Instabilities in ``S‐Shaped'' Negative Differential Conductivity Elements , 1971 .

[17]  James M Tour,et al.  Vibrational and electronic heating in nanoscale junctions. , 2011, Nature nanotechnology.

[18]  Wei Wu,et al.  A hybrid nanomemristor/transistor logic circuit capable of self-programming , 2009, Proceedings of the National Academy of Sciences.

[19]  Julien Borghetti,et al.  Coexistence of Memristance and Negative Differential Resistance in a Nanoscale Metal‐Oxide‐Metal System , 2011, Advanced materials.

[20]  Yan Zhang,et al.  Analysis of “on” and “off” times for thermally driven VO2 metal-insulator transition nanoscale switching devices , 2011 .

[21]  Takehiko Mori,et al.  An organic thyristor , 2005, Nature.

[22]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[23]  K. West,et al.  Astability and negative differential resistance of the Wigner solid. , 2007, Physical review letters.

[24]  Toshiya Hayashi The S-type Negative Resistance Phenomena and Oscillation in Metal-Insulator-Metal Diode , 1964 .

[25]  J. E. Christopher,et al.  Conduction Phenomena in Thin Layers of Iron Oxide , 1969 .

[26]  A. Crunteanu,et al.  Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis , 2010, Science and technology of advanced materials.

[27]  D. Whitmore,et al.  Electrical conductivity and thermoelectric power of niobium dioxide , 1966 .

[28]  Herbert Schroeder,et al.  Comment on “Exponential ionic drift: fast switching and low volatility of thin-film memristors” by D.B. Strukov and R.S. Williams in Appl. Phys. A (2009) 94: 515–519 , 2011 .

[29]  S O Pearson,et al.  The Neon Tube as a Means of Producing Intermittent Currents , 1921 .

[30]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[31]  H. Futaki A New Type Semiconductor (Critical Temperature Resistor) , 1965 .

[32]  Lee,et al.  Thermal conductivity of sputtered oxide films. , 1995, Physical review. B, Condensed matter.

[33]  B. Ridley,et al.  Specific Negative Resistance in Solids , 1963 .

[34]  Yoshio Waseda,et al.  Thermodynamic Properties of Niobium Oxides , 2010 .

[35]  J. DeNatale,et al.  Fast thin film vanadium dioxide microwave switches , 1990, 12th Annual Symposium on Gallium Arsenide Integrated Circuit (GaAs IC).

[36]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[37]  Hyunsang Hwang,et al.  Diode-less bilayer oxide (WOx–NbOx) device for cross-point resistive memory applications , 2011, Nanotechnology.

[38]  Hongkun Park,et al.  Current-driven phase oscillation and domain-wall propagation in WxV1-xO2 nanobeams. , 2007, Nano letters.

[39]  H St G Anson,et al.  Demonstration of Some Electrical Properties of Neon-filled Lamps , 1921 .

[40]  K. L. Chopra,et al.  Avalanche‐Induced Negative Resistance in Thin Oxide Films , 1965 .

[41]  H. Kishida,et al.  Room-Temperature Current Oscillation Based on Negative Differential Resistance in a One-Dimensional Organic Charge-Transfer Complex , 2011 .

[42]  Gokul Gopalakrishnan,et al.  Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions , 2009 .

[43]  Scaling of Silicon Phase-Change Oscillators , 2011, IEEE Electron Device Letters.

[44]  S Fourmaux,et al.  Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge x-ray absorption. , 2005, Physical review letters.

[45]  A. Magnéli,et al.  NOTE ON THE CRYSTAL STRUCTURE OF NIOBIUM DIOXIDE , 1955 .

[46]  D. Ielmini,et al.  Voltage-Controlled Relaxation Oscillations in Phase-Change Memory Devices , 2008, IEEE Electron Device Letters.

[47]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[48]  Seung Chul Chae,et al.  Oxide Double‐Layer Nanocrossbar for Ultrahigh‐Density Bipolar Resistive Memory , 2011, Advanced materials.

[49]  J. Sakai,et al.  High-efficiency voltage oscillation in VO2 planer-type junctions with infinite negative differential resistance , 2008 .

[50]  C. N. Berglund Thermal filaments in vanadium dioxide , 1969 .

[51]  Takehiko Mori,et al.  Voltage oscillation associated with nonlinear conductivity in the organic , 2010 .

[52]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[53]  Daniele Ielmini,et al.  A New Transient Model for Recovery and Relaxation Oscillations in Phase-Change Memories , 2010, IEEE Transactions on Electron Devices.

[54]  A. Penn,et al.  High-speed solid-state thermal switches based on vanadium dioxide , 1968 .

[55]  D. V. Geppert A new negative-resistance device , 1963 .

[56]  S. Ramanathan,et al.  Nanoscale imaging and control of resistance switching in VO2 at room temperature , 2010 .

[57]  Massimiliano Di Ventra,et al.  Phase-transition driven memristive system , 2009, 0901.0899.