Applicability of excavated rock material: A European technical review implying opportunities for future tunnelling projects
暂无分享,去创建一个
Michael Benedikt | Robert Galler | L. Ulrici | Maximilian Haas | Laëtitia Mongeard | Laetitia D'Aloïa | Agnès Cherrey | R. Galler | M. Benedikt | L. D'Aloïa | L. Ulrici | M. Haas | L. Mongeard | Agnès Cherrey
[1] J. T. Childers,et al. FCC-ee: The Lepton Collider , 2019, The European Physical Journal Special Topics.
[2] Paul H. Brunner,et al. Metabolism of the Anthroposphere: Analysis, Evaluation, Design , 2012 .
[3] Lucio Rossi,et al. CIVIL ENGINEERING FEASIBILITY STUDIES FOR FUTURE RING COLLIDERS AT CERN , 2013 .
[4] Oliver K. Wagner,et al. Selection of tunnelling methods for the New Semmering Base Tunnel / Auswahl der Vortriebsmethode beim Semmering-Basistunnel neu , 2011 .
[5] Stefan Skuk,et al. Brenner Base Tunnel: First results of the exploratory tunnels from a geological and geomechanical point of view , 2017 .
[6] E. M. Pizzarotti,et al. Geomechanical characterisation of fault rocks in tunnelling: The Brenner Base Tunnel (Northern Italy) , 2016 .
[7] Robert Galler,et al. Tunnel boring machine performance prediction with scaled rock cutting tests , 2014 .
[8] Robert Galler,et al. Tunnel spoil – New technologies on the way from waste to raw material / Tunnelausbruch – Neue Technologien für den Weg vom Abfall zum Rohstoff , 2014 .
[9] E. R. Oxburgh. Geology of Switzerland: A Guide-Book. Part A: An Outline of the Geology of Switzerland , 1981, Mineralogical Magazine.
[10] Konrad Bergmeister. Vorerkundung und Baufortschritt beim Brenner Basistunnel , 2013 .
[11] Mark Birkin,et al. Modelling the transportation of primary aggregates in England and Wales: Exploring initiatives to reduce CO2 emissions , 2013 .
[12] Robert Galler,et al. Tunnel excavation material – high value raw material , 2009 .
[13] Peter Teuscher,et al. Alpenquerende Tunnel: Materialbewirtschaftung und Betontechnologie beim Lötschberg‐Basistunnel , 2007 .
[14] A. Blondel,et al. Future Circular Colliders succeeding the LHC , 2020 .
[15] Jingzheng Ren,et al. Construction and demolition waste management in China through the 3R principle , 2018 .
[16] J Burdin,et al. The management of excavated materials from the Lyon‐Turin rail link project , 2009 .
[17] Konrad Bergmeister,et al. Aufbereitung und Wiederverwertung von Tunnelausbruchmaterial beim Brenner Basistunnel , 2015 .
[18] Gracia Rodríguez,et al. The contribution of environmental management systems to the management of construction and demolition waste: The case of the Autonomous Community of Madrid (Spain) , 2007 .
[19] K. Soga,et al. Geotechnical characterisation of a weak sedimentary rock mass at CERN, Geneva , 2018, Tunnelling and Underground Space Technology.
[20] Nicola De Filippis,et al. FCC-hh: The Hadron Collider , 2019, The European Physical Journal Special Topics.
[21] Alexis Sagastume Gutiérrez,et al. Improving the environmental performance of an earthwork project using cleaner production strategies , 2013 .
[22] Ali Akhtar,et al. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective , 2018, Journal of Cleaner Production.
[23] A. Puzrin,et al. Effects of dispersing foams and polymers on the mechanical behaviour of clay pastes , 2013 .
[24] E. Hultink,et al. The Circular Economy - A New Sustainability Paradigm? , 2017 .
[25] Timo Jouttijärvi,et al. Construction and demolition waste management – a holistic evaluation of environmental performance , 2015 .
[26] Herbert H. Einstein,et al. Planning the handling of tunnel excavation material - A process of decision making under uncertainty , 2013 .
[27] N. Clerc,et al. Heat production and storage in Western Switzerland: advances and challenges of intense multidisciplinary geothermal exploration activities, an 8 years progress report , 2020 .
[28] Erich Kolb,et al. Tunnel excavation – The conflict between waste and recycling through the example of the Koralm Tunnel, contract KAT2 / Tunnelausbruch – Das Spannungsfeld zwischen Abfall und Verwertung am Beispiel Koralmtunnel, Baulos KAT2 , 2014 .
[29] L. Scibile,et al. Waste or valuable resource – a critical European review on re-using and managing tunnel excavation material , 2020 .
[30] Leb Saathof,et al. RE-USE OF EXCAVATED SOIL FROM LARGE DIAMETER TUNNELS IN THE NETHERLANDS , 1999 .
[31] Maria Gavrilescu,et al. Comparing environmental impacts of natural inert and recycled construction and demolition waste processing using LCA , 2013 .
[32] T. Zimmermann,et al. Characteristics of selected concrete with tunnel excavation material , 2015 .
[33] B. Moreno,et al. Measuring the progress towards a resource-efficient European Union under the Europe 2020 strategy , 2018 .
[34] Gian Andrea Blengini,et al. Resources and waste management in Turin (Italy): the role of recycled aggregates in the sustainable supply mix , 2010 .
[35] K. Voit,et al. Rock Material Recycling in Tunnel Engineering , 2020, Applied Sciences.
[36] S. Ulgiati,et al. Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review , 2017 .
[37] C. Cans,et al. Code de l'environnement , 2008 .
[38] Cristina Iacoboaea,et al. Construction and Demolition Waste - a Challenge for the European Union? , 2019 .
[39] Joakim Krook,et al. Landfill mining: a critical review of two decades of research. , 2012, Waste management.
[40] J. Korhonen,et al. Circular Economy: The Concept and its Limitations , 2018 .
[41] Fernanda Campos da Cruz Rios,et al. Beyond Recycling: Design for Disassembly, Reuse, and Circular Economy in the Built Environment , 2018 .
[42] Konrad Bergmeister. Alpenquerende Tunnel: Projektübersicht und Materialbewirtschaftung beim Brenner Basistunnel , 2007 .
[43] A. Puzrin,et al. Enhanced delivery of chemical agents in soil improvement applications , 2016 .
[44] Mohamed Marzouk,et al. Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics , 2014 .
[45] Erich Kolb,et al. Responsible handling of tunnel spoil through the example of Koralm Tunnel contract KAT2 / Verantwortungsvoller Umgang mit Tunnelausbruch am Beispiel Koralmtunnel, Baulos KAT2 , 2015 .
[46] K. Tan,et al. Use of alkali-silica reactive sedimentary rock powder as a resource to produce high strength geopolymer binder , 2017 .
[47] Anthony Halog,et al. Developing strategies for managing construction and demolition wastes in Malaysia based on the concept of circular economy , 2017 .
[48] Helmut Huber,et al. Recycling of tunnel excavation using the example of the Koralm Tunnel, contract KAT2 – Status April 2015 / Verwertung von Tunnelausbruch am Beispiel des Koralmtunnels, Baulos KAT2 – Stand April 2015 , 2015 .
[49] Heinz‐Georg Haid,et al. Katzenberg tunnel – environmental and approval constraints on the recycling of tunnel spoil material , 2009 .
[50] L. Montanarella,et al. European Soil Data Centre: Response to European policy support and public data requirements , 2012 .
[51] S. Ritzén,et al. Barriers to the Circular Economy – Integration of Perspectives and Domains , 2017 .
[52] Robben,et al. Sensor‐Based Ore Sorting Technology in Mining—Past, Present and Future , 2019, Minerals.
[53] R. Schuerch,et al. The Ceneri Base Tunnel: Construction Experience with the Southern Portion of the Flat Railway Line Crossing the Swiss Alps , 2018 .
[54] K. Lundberg,et al. Sustainable management of excavated soil and rock in urban areas – A literature review , 2015 .
[55] Gilpin R. Robinson,et al. A GIS analysis of suitability for construction aggregate recycling sites using regional transportation network and population density features , 2004 .
[56] Hilda Lafebre,et al. Contaminated Soil Management at Construction Sites , 1998 .
[57] Paul S Phillips,et al. The successful demonstration of aerobic landfilling: The potential for a more sustainable solid waste management approach? , 2001 .