Applicability of excavated rock material: A European technical review implying opportunities for future tunnelling projects

Abstract The European Organization for Nuclear Research (CERN) is a world-wide leading organisation in the field of particle physics and operation of high-class particle accelerators. Since 2013, CERN has undertaken feasibility investigations for a particle accelerator, named Future Circular Collider (FCC) to be installed within a 90–100 km subsurface infrastructure likely to enter construction phase after 2030. An important aspect of its construction and environmental impact assessment is the management of approximately 9.1 million m3 of excavated rock and soil. The aim of this paper is to thoroughly review the applications of excavated material across European subsurface construction projects from a technical point of view and set them into context with studies currently ongoing for FCC. We propose a conceptual flow model for rock characterisation with respect to both applicability of excavated material and tunnelling excavation techniques for future international subsurface construction projects. The review has revealed a vast and encouraging potential across different European construction sites efficiently using excavated rock and soil over the past decade ranging from concrete production, geopolymer production, embankment and landfilling. Examples of reviewed subsurface tunnelling projects are likely to be applied for FCC including concrete production, clay-sealing for embankments, geopolymer face stabilization, re-cultivation or agricultural usage as mixed soil material or sustainable waste disposal.

[1]  J. T. Childers,et al.  FCC-ee: The Lepton Collider , 2019, The European Physical Journal Special Topics.

[2]  Paul H. Brunner,et al.  Metabolism of the Anthroposphere: Analysis, Evaluation, Design , 2012 .

[3]  Lucio Rossi,et al.  CIVIL ENGINEERING FEASIBILITY STUDIES FOR FUTURE RING COLLIDERS AT CERN , 2013 .

[4]  Oliver K. Wagner,et al.  Selection of tunnelling methods for the New Semmering Base Tunnel / Auswahl der Vortriebsmethode beim Semmering-Basistunnel neu , 2011 .

[5]  Stefan Skuk,et al.  Brenner Base Tunnel: First results of the exploratory tunnels from a geological and geomechanical point of view , 2017 .

[6]  E. M. Pizzarotti,et al.  Geomechanical characterisation of fault rocks in tunnelling: The Brenner Base Tunnel (Northern Italy) , 2016 .

[7]  Robert Galler,et al.  Tunnel boring machine performance prediction with scaled rock cutting tests , 2014 .

[8]  Robert Galler,et al.  Tunnel spoil – New technologies on the way from waste to raw material / Tunnelausbruch – Neue Technologien für den Weg vom Abfall zum Rohstoff , 2014 .

[9]  E. R. Oxburgh Geology of Switzerland: A Guide-Book. Part A: An Outline of the Geology of Switzerland , 1981, Mineralogical Magazine.

[10]  Konrad Bergmeister Vorerkundung und Baufortschritt beim Brenner Basistunnel , 2013 .

[11]  Mark Birkin,et al.  Modelling the transportation of primary aggregates in England and Wales: Exploring initiatives to reduce CO2 emissions , 2013 .

[12]  Robert Galler,et al.  Tunnel excavation material – high value raw material , 2009 .

[13]  Peter Teuscher,et al.  Alpenquerende Tunnel: Materialbewirtschaftung und Betontechnologie beim Lötschberg‐Basistunnel , 2007 .

[14]  A. Blondel,et al.  Future Circular Colliders succeeding the LHC , 2020 .

[15]  Jingzheng Ren,et al.  Construction and demolition waste management in China through the 3R principle , 2018 .

[16]  J Burdin,et al.  The management of excavated materials from the Lyon‐Turin rail link project , 2009 .

[17]  Konrad Bergmeister,et al.  Aufbereitung und Wiederverwertung von Tunnelausbruchmaterial beim Brenner Basistunnel , 2015 .

[18]  Gracia Rodríguez,et al.  The contribution of environmental management systems to the management of construction and demolition waste: The case of the Autonomous Community of Madrid (Spain) , 2007 .

[19]  K. Soga,et al.  Geotechnical characterisation of a weak sedimentary rock mass at CERN, Geneva , 2018, Tunnelling and Underground Space Technology.

[20]  Nicola De Filippis,et al.  FCC-hh: The Hadron Collider , 2019, The European Physical Journal Special Topics.

[21]  Alexis Sagastume Gutiérrez,et al.  Improving the environmental performance of an earthwork project using cleaner production strategies , 2013 .

[22]  Ali Akhtar,et al.  Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective , 2018, Journal of Cleaner Production.

[23]  A. Puzrin,et al.  Effects of dispersing foams and polymers on the mechanical behaviour of clay pastes , 2013 .

[24]  E. Hultink,et al.  The Circular Economy - A New Sustainability Paradigm? , 2017 .

[25]  Timo Jouttijärvi,et al.  Construction and demolition waste management – a holistic evaluation of environmental performance , 2015 .

[26]  Herbert H. Einstein,et al.  Planning the handling of tunnel excavation material - A process of decision making under uncertainty , 2013 .

[27]  N. Clerc,et al.  Heat production and storage in Western Switzerland: advances and challenges of intense multidisciplinary geothermal exploration activities, an 8 years progress report , 2020 .

[28]  Erich Kolb,et al.  Tunnel excavation – The conflict between waste and recycling through the example of the Koralm Tunnel, contract KAT2 / Tunnelausbruch – Das Spannungsfeld zwischen Abfall und Verwertung am Beispiel Koralmtunnel, Baulos KAT2 , 2014 .

[29]  L. Scibile,et al.  Waste or valuable resource – a critical European review on re-using and managing tunnel excavation material , 2020 .

[30]  Leb Saathof,et al.  RE-USE OF EXCAVATED SOIL FROM LARGE DIAMETER TUNNELS IN THE NETHERLANDS , 1999 .

[31]  Maria Gavrilescu,et al.  Comparing environmental impacts of natural inert and recycled construction and demolition waste processing using LCA , 2013 .

[32]  T. Zimmermann,et al.  Characteristics of selected concrete with tunnel excavation material , 2015 .

[33]  B. Moreno,et al.  Measuring the progress towards a resource-efficient European Union under the Europe 2020 strategy , 2018 .

[34]  Gian Andrea Blengini,et al.  Resources and waste management in Turin (Italy): the role of recycled aggregates in the sustainable supply mix , 2010 .

[35]  K. Voit,et al.  Rock Material Recycling in Tunnel Engineering , 2020, Applied Sciences.

[36]  S. Ulgiati,et al.  Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review , 2017 .

[37]  C. Cans,et al.  Code de l'environnement , 2008 .

[38]  Cristina Iacoboaea,et al.  Construction and Demolition Waste - a Challenge for the European Union? , 2019 .

[39]  Joakim Krook,et al.  Landfill mining: a critical review of two decades of research. , 2012, Waste management.

[40]  J. Korhonen,et al.  Circular Economy: The Concept and its Limitations , 2018 .

[41]  Fernanda Campos da Cruz Rios,et al.  Beyond Recycling: Design for Disassembly, Reuse, and Circular Economy in the Built Environment , 2018 .

[42]  Konrad Bergmeister Alpenquerende Tunnel: Projektübersicht und Materialbewirtschaftung beim Brenner Basistunnel , 2007 .

[43]  A. Puzrin,et al.  Enhanced delivery of chemical agents in soil improvement applications , 2016 .

[44]  Mohamed Marzouk,et al.  Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics , 2014 .

[45]  Erich Kolb,et al.  Responsible handling of tunnel spoil through the example of Koralm Tunnel contract KAT2 / Verantwortungsvoller Umgang mit Tunnelausbruch am Beispiel Koralmtunnel, Baulos KAT2 , 2015 .

[46]  K. Tan,et al.  Use of alkali-silica reactive sedimentary rock powder as a resource to produce high strength geopolymer binder , 2017 .

[47]  Anthony Halog,et al.  Developing strategies for managing construction and demolition wastes in Malaysia based on the concept of circular economy , 2017 .

[48]  Helmut Huber,et al.  Recycling of tunnel excavation using the example of the Koralm Tunnel, contract KAT2 – Status April 2015 / Verwertung von Tunnelausbruch am Beispiel des Koralmtunnels, Baulos KAT2 – Stand April 2015 , 2015 .

[49]  Heinz‐Georg Haid,et al.  Katzenberg tunnel – environmental and approval constraints on the recycling of tunnel spoil material , 2009 .

[50]  L. Montanarella,et al.  European Soil Data Centre: Response to European policy support and public data requirements , 2012 .

[51]  S. Ritzén,et al.  Barriers to the Circular Economy – Integration of Perspectives and Domains , 2017 .

[52]  Robben,et al.  Sensor‐Based Ore Sorting Technology in Mining—Past, Present and Future , 2019, Minerals.

[53]  R. Schuerch,et al.  The Ceneri Base Tunnel: Construction Experience with the Southern Portion of the Flat Railway Line Crossing the Swiss Alps , 2018 .

[54]  K. Lundberg,et al.  Sustainable management of excavated soil and rock in urban areas – A literature review , 2015 .

[55]  Gilpin R. Robinson,et al.  A GIS analysis of suitability for construction aggregate recycling sites using regional transportation network and population density features , 2004 .

[56]  Hilda Lafebre,et al.  Contaminated Soil Management at Construction Sites , 1998 .

[57]  Paul S Phillips,et al.  The successful demonstration of aerobic landfilling: The potential for a more sustainable solid waste management approach? , 2001 .