Submitted to the Annals of Applied Probability HAMILTON CYCLES IN RANDOM GEOMETRIC GRAPHS By
暂无分享,去创建一个
Michael Krivelevich | Tobias Muller | Mark Walters | B'ela Bollob'as | J'ozsef Balogh | M. Krivelevich | M. Walters | B. Bollob'as | J. Balogh | Tobias Muller
[1] L. Pósa,et al. Hamiltonian circuits in random graphs , 1976, Discret. Math..
[2] Panganamala Ramana Kumar,et al. The Number of Neighbors Needed for Connectivity of Wireless Networks , 2004, Wirel. Networks.
[3] Béla Bollobás. The Art of Mathematics - Coffee Time in Memphis , 2006 .
[4] B. Bollobás,et al. Connectivity of random k-nearest-neighbour graphs , 2005, Advances in Applied Probability.
[5] János Komlós,et al. Limit distribution for the existence of hamiltonian cycles in a random graph , 1983, Discret. Math..
[6] B. Bollobás,et al. A critical constant for the k nearest-neighbour model , 2007, Advances in Applied Probability.
[7] Mathew D. Penrose,et al. Random Geometric Graphs , 2003 .
[8] M. Penrose. The longest edge of the random minimal spanning tree , 1997 .
[9] Mathew D. Penrose,et al. On k-connectivity for a geometric random graph , 1999, Random Struct. Algorithms.
[10] Josep Díaz,et al. Sharp threshold for hamiltonicity of random geometric graphs , 2006, SIAM J. Discret. Math..
[11] Béla Bollobás,et al. Highly connected random geometric graphs , 2009, Discret. Appl. Math..