Stability of Equilibrium Points and Storage Capacity of Hopfield Neural Networks with Higher Order Nonlinearity
暂无分享,去创建一个
[1] Heng-Ming Tai,et al. Neural networks with higher-order nonlinearity , 1988 .
[2] W. Krauth,et al. Learning algorithms with optimal stability in neural networks , 1987 .
[3] C. L. Giles,et al. High order correlation model for associative memory , 1987 .
[4] Richard O. Duda,et al. Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.
[5] Demetri Psaltis,et al. Higher order associative memories and their optical implementations , 1988, Neural Networks.
[6] Thomas B. Kepler,et al. Universality in the space of interactions for network models , 1989 .
[7] Santosh S. Venkatesh,et al. The capacity of the Hopfield associative memory , 1987, IEEE Trans. Inf. Theory.
[8] Baldi,et al. Number of stable points for spin-glasses and neural networks of higher orders. , 1987, Physical review letters.
[9] Mohammad Bagher Menhaj,et al. On Classification of Some Hopfield-Type Learning Rules via Stability Measures , 2006 .
[10] David Burshtein. Long-term attraction in higher order neural networks , 1998, IEEE Trans. Neural Networks.
[11] C. L. Giles,et al. Machine learning using higher order correlation networks , 1986 .