PAC1 Receptors: Shapeshifters in Motion

[1]  M. Bouton,et al.  Pituitary Adenylate Cyclase-Activating Peptide in the Bed Nucleus of the Stria Terminalis Mediates Stress-Induced Reinstatement of Cocaine Seeking in Rats , 2018, Neuropsychopharmacology.

[2]  J. Tajti,et al.  PACAP and its role in primary headaches , 2018, The Journal of Headache and Pain.

[3]  Hualiang Jiang,et al.  Structure of the glucagon receptor in complex with a glucagon analogue , 2018, Nature.

[4]  R. Stevens,et al.  Extending the Structural View of Class B GPCRs. , 2017, Trends in biochemical sciences.

[5]  Alexander S. Hauser,et al.  GPCRdb in 2018: adding GPCR structure models and ligands , 2017, Nucleic Acids Res..

[6]  R. Stevens,et al.  How Ligands Illuminate GPCR Molecular Pharmacology , 2017, Cell.

[7]  Jianing Li,et al.  Conformational Transitions of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor, a Human Class B GPCR , 2017, Scientific Reports.

[8]  Ali Jazayeri,et al.  Crystal structure of the GLP-1 receptor bound to a peptide agonist , 2017, Nature.

[9]  T. S. Kobilka,et al.  Cryo-EM structure of the activated GLP-1 receptor in complex with G protein , 2017, Nature.

[10]  Chris de Graaf,et al.  Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators , 2017, Nature.

[11]  Hualiang Jiang,et al.  Structure of the full-length glucagon class B G protein-coupled receptor , 2017, Nature.

[12]  Arthur Christopoulos,et al.  Phase-plate cryo-EM structure of a class B GPCR-G protein complex , 2017, Nature.

[13]  Naomi R. Latorraca,et al.  GPCR Dynamics: Structures in Motion. , 2017, Chemical reviews.

[14]  P. Sexton,et al.  Allostery and Biased Agonism at Class B G Protein-Coupled Receptors. , 2017, Chemical reviews.

[15]  B. Wu,et al.  Structural studies of G protein‐coupled receptors , 2016, IUBMB life.

[16]  C. Costa-Neto,et al.  Recent updates on GPCR biased agonism. , 2016, Pharmacological research.

[17]  Henry Lin,et al.  Structure-based discovery of opioid analgesics with reduced side effects , 2016, Nature.

[18]  S. P. Andrews,et al.  Extra-helical binding site of a glucagon receptor antagonist , 2016, Nature.

[19]  Pierangelo Geppetti,et al.  G Protein-Coupled Receptors: Dynamic Machines for Signaling Pain and Itch , 2015, Neuron.

[20]  Kelly J Culhane,et al.  Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors , 2015, Front. Pharmacol..

[21]  Stuart Maudsley,et al.  MINIREVIEW—EXPLORING THE BIOLOGY OF GPCRS: FROM IN VITRO TO IN VIVO Fulfilling the Promise of "Biased" G Protein–Coupled Receptor Agonism , 2015 .

[22]  V. May,et al.  Pituitary Adenylate Cyclase Activating Polypeptide in Stress-Related Disorders: Data Convergence from Animal and Human Studies , 2015, Biological Psychiatry.

[23]  Clinton S Potter,et al.  Conformational states of the full-length glucagon receptor , 2015, Nature Communications.

[24]  Xian Zhang,et al.  Quercetin Enhances Cisplatin Sensitivity of Human Osteosarcoma Cells by Modulating microRNA-217-KRAS Axis , 2015, Molecules and cells.

[25]  S. Filipek,et al.  W246(6.48) opens a gate for a continuous intrinsic water pathway during activation of the adenosine A2A receptor. , 2014, Angewandte Chemie.

[26]  S. E. Hammack,et al.  Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: Implication for the sensory and behavioral effects of pain , 2014, Neuropharmacology.

[27]  A. Howard,et al.  PAC1 receptor antagonism in the bed nucleus of the stria terminalis (BNST) attenuates the endocrine and behavioral consequences of chronic stress , 2014, Psychoneuroendocrinology.

[28]  Chris de Graaf,et al.  Structure of the human glucagon class B G-protein-coupled receptor , 2013, Nature.

[29]  Ali Jazayeri,et al.  Structure of class B GPCR corticotropin-releasing factor receptor 1 , 2013, Nature.

[30]  Amanda L. Jonsson,et al.  Ligand-dependent activation and deactivation of the human adenosine A(2A) receptor. , 2013, Journal of the American Chemical Society.

[31]  J. Blechman,et al.  Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity , 2013, Front. Endocrinol..

[32]  R. Stevens,et al.  Structure-function of the G protein-coupled receptor superfamily. , 2013, Annual review of pharmacology and toxicology.

[33]  H. Vaudry,et al.  Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase‐activating polypeptide: IUPHAR Review 1 , 2012, British journal of pharmacology.

[34]  P. Park,et al.  Ensemble of G protein-coupled receptor active states. , 2012, Current medicinal chemistry.

[35]  Frank Noé,et al.  Markov models of molecular kinetics: generation and validation. , 2011, The Journal of chemical physics.

[36]  B. Bradley,et al.  Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor , 2011, Nature.

[37]  Laurence J. Miller,et al.  Seven Transmembrane Receptors as Shapeshifting Proteins: The Impact of Allosteric Modulation and Functional Selectivity on New Drug Discovery , 2010, Pharmacological Reviews.

[38]  Z. Luthey-Schulten,et al.  Exit strategies for charged tRNA from GluRS. , 2010, Journal of molecular biology.

[39]  L. Eiden,et al.  Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on pituitary adenylate cyclase-activating polypeptide signaling , 2010, Neuroscience.

[40]  Z. Luthey-Schulten,et al.  Experimental and computational determination of tRNA dynamics , 2010, FEBS letters.

[41]  Xuhui Huang,et al.  Using generalized ensemble simulations and Markov state models to identify conformational states. , 2009, Methods.

[42]  H. Vaudry,et al.  Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery , 2009, Pharmacological Reviews.

[43]  M. Iwata,et al.  [Structural studies on G protein-coupled receptors]. , 2009, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[44]  W. Falls,et al.  Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): Roles for PACAP in anxiety-like behavior , 2009, Psychoneuroendocrinology.

[45]  S. Rasmussen,et al.  The structure and function of G-protein-coupled receptors , 2009, Nature.

[46]  Z. Luthey-Schulten,et al.  Dynamical networks in tRNA:protein complexes , 2009, Proceedings of the National Academy of Sciences.

[47]  W. E,et al.  Towards a Theory of Transition Paths , 2006 .

[48]  M. Kas,et al.  Inverse agonism gains weight. , 2003, Trends in pharmacological sciences.

[49]  N. Sherwood,et al.  THE ORIGIN AND FUNCTION OF THE PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE (PACAP)/GLUCAGON SUPERFAMILY , 2000 .

[50]  V. May,et al.  Pituitary Adenylate Cyclase-activating Polypeptides Directly Stimulate Sympathetic Neuron Neuropeptide Y Release through PAC1 Receptor Isoform Activation of Specific Intracellular Signaling Pathways* , 1999, The Journal of Biological Chemistry.

[51]  E. Lerner,et al.  Maxadilan, the Vasodilator from Sand Flies, Is a Specific Pituitary Adenylate Cyclase Activating Peptide Type I Receptor Agonist* , 1997, The Journal of Biological Chemistry.

[52]  J. Bockaert,et al.  Alternative Splicing in the N-terminal Extracellular Domain of the Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Receptor Modulates Receptor Selectivity and Relative Potencies of PACAP-27 and PACAP-38 in Phospholipase C Activation* , 1996, The Journal of Biological Chemistry.

[53]  S. Wank,et al.  Cloning and Characterization of the Signal Transduction of Four Splice Variants of the Human Pituitary Adenylate Cyclase Activating Polypeptide Receptor , 1996, The Journal of Biological Chemistry.

[54]  V. May,et al.  Pituitary Adenylate Cyclase‐Activating Polypeptide (PACAP) Regulation of Sympathetic Neuron Neuropeptide Y and Catecholamine Expression , 1995, Journal of neurochemistry.

[55]  Laurent Journot,et al.  Differential signal transduction by five splice variants of the PACAP receptor , 1993, Nature.

[56]  K. Mizuno,et al.  Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. , 1991, Endocrinology.

[57]  H. Onda,et al.  A novel peptide which stimulates adenylate cyclase: molecular cloning and characterization of the ovine and human cDNAs. , 1990, Biochemical and biophysical research communications.

[58]  M. Culler,et al.  Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. , 1989, Biochemical and biophysical research communications.

[59]  K. Ressler,et al.  Parabrachial PACAP activation of amygdala endosomal ERK signaling regulates the emotional component of pain , 2017 .

[60]  Chris de Graaf,et al.  Insights into the structure of class B GPCRs. , 2014, Trends in pharmacological sciences.