Observer-Based Feedback Controllers for Exponential Stabilization of Hybrid Periodic Orbits: Application to Underactuated Bipedal Walking

This paper presents a systematic approach to design observer-based output feedback controllers for hybrid dynamical systems arising from bipedal walking. We consider a class of parameterized observer-based output feedback controllers for local exponential stabilization of hybrid periodic orbits. The properties of the Poincaré map are investigated to show that the Jacobian linearization of the Poincaré map takes a triangular form. This demonstrates the nonlinear separation principle for periodic orbits. In particular, the exponential stabilization of hybrid periodic orbits under dynamic output feedback control can be achieved by solving separate eigenvalue placement problems for the nonlinear state feedback and the observer. The paper then solves the state feedback and observer design problems by employing an iterative algorithm based on a sequence of optimization problems involving bilinear and linear matrix inequalities. The theoretical results are confirmed by designing a nonlinear observer-based output feedback controller for underactuated walking of a 3D humanoid model with 18 state variables, 54 state feedback parameters, and 271 observer parameters.

[1]  Jessy W. Grizzle,et al.  Reduced-order framework for exponential stabilization of periodic orbits on parameterized hybrid zero dynamics manifolds: Application to bipedal locomotion , 2017 .

[2]  Manfredi Maggiore,et al.  A separation principle for a class of non-UCO systems , 2003, IEEE Trans. Autom. Control..

[3]  Jessy W. Grizzle,et al.  Exponentially stabilizing continuous-time controllers for periodic orbits of hybrid systems: Application to bipedal locomotion with ground height variations , 2016, Int. J. Robotics Res..

[4]  A. Teel,et al.  Global stabilizability and observability imply semi-global stabilizability by output feedback , 1994 .

[5]  A. Isidori Nonlinear Control Systems , 1985 .

[6]  Wang Zicai Observer Design for a Class of Nonlinear Systems , 1998 .

[7]  Leonid B. Freidovich,et al.  Transverse Linearization for Controlled Mechanical Systems With Several Passive Degrees of Freedom , 2010, IEEE Transactions on Automatic Control.

[8]  Hassan K. Khalil,et al.  A Nonlinear High-Gain Observer for Systems With Measurement Noise in a Feedback Control Framework , 2013, IEEE Transactions on Automatic Control.

[9]  H. Khalil,et al.  A separation principle for the stabilization of a class of nonlinear systems , 1997 .

[10]  Leonid B. Freidovich,et al.  Stable Walking Gaits for a Three-Link Planar Biped Robot With One Actuator , 2013, IEEE Transactions on Robotics.

[11]  Aaron D. Ames,et al.  Multicontact Locomotion on Transfemoral Prostheses via Hybrid System Models and Optimization-Based Control , 2016, IEEE Transactions on Automation Science and Engineering.

[12]  Jessy W. Grizzle,et al.  The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper , 2009, IEEE Transactions on Automatic Control.

[13]  Ricardo G. Sanfelice,et al.  On the performance of high-gain observers with gain adaptation under measurement noise , 2011, Autom..

[14]  Jonathon W. Sensinger,et al.  Towards Biomimetic Virtual Constraint Control of a Powered Prosthetic Leg , 2014, IEEE Transactions on Control Systems Technology.

[15]  M. Spong,et al.  CONTROLLED SYMMETRIES AND PASSIVE WALKING , 2002 .

[16]  Ali Zemouche,et al.  On LMI conditions to design observers for Lipschitz nonlinear systems , 2013, Autom..

[17]  Ian R. Manchester,et al.  Stable dynamic walking over uneven terrain , 2011, Int. J. Robotics Res..

[18]  Aaron D. Ames,et al.  Planar multi-contact bipedal walking using hybrid zero dynamics , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Jonathon W. Sensinger,et al.  Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments With Transfemoral Amputees , 2014, IEEE Transactions on Robotics.

[20]  S. Shankar Sastry,et al.  Model Reduction Near Periodic Orbits of Hybrid Dynamical Systems , 2013, IEEE Transactions on Automatic Control.

[21]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .

[22]  Petar V. Kokotovic,et al.  Nonlinear observers: a circle criterion design and robustness analysis , 2001, Autom..

[23]  Jessy W. Grizzle,et al.  Hybrid Invariant Manifolds in Systems With Impulse Effects With Application to Periodic Locomotion in Bipedal Robots , 2009, IEEE Transactions on Automatic Control.

[24]  Jessy W. Grizzle,et al.  Experimental results for 3D bipedal robot walking based on systematic optimization of virtual constraints , 2016, 2016 American Control Conference (ACC).

[25]  S. Sastry,et al.  Hybrid Geometric Reduction of Hybrid Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[26]  Franck Plestan,et al.  Step-by-step sliding mode observer for control of a walking biped robot by using only actuated variables measurement , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[28]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[29]  O. Toker,et al.  On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[30]  Jessy W. Grizzle,et al.  Performance Analysis and Feedback Control of ATRIAS, A Three-Dimensional Bipedal Robot , 2014 .

[31]  Qu Cao,et al.  Quadrupedal running with a flexible torso: control and speed transitions with sums-of-squares verification , 2016, Artificial Life and Robotics.

[32]  D. Henrion,et al.  Solving polynomial static output feedback problems with PENBMI , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[33]  R. Rajamani Observers for Lipschitz nonlinear systems , 1998, IEEE Trans. Autom. Control..

[34]  A. Germani,et al.  A Luenberger-like observer for nonlinear systems , 1993 .

[35]  R. Braatz,et al.  A tutorial on linear and bilinear matrix inequalities , 2000 .

[36]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[37]  Ambarish Goswami,et al.  Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point , 1999, Int. J. Robotics Res..

[38]  Behçet Açikmese,et al.  Observers for systems with nonlinearities satisfying incremental quadratic constraints , 2011, Autom..

[39]  Murat Arcak,et al.  Certainty-equivalence output-feedback design with circle-criterion observers , 2005, IEEE Transactions on Automatic Control.

[40]  Aaron D. Ames,et al.  A geometric approach to three-dimensional hipped bipedal robotic walking , 2007, 2007 46th IEEE Conference on Decision and Control.

[41]  Franck Plestan,et al.  Observer-based control of a walking biped robot without orientation measurement , 2006, Robotica.

[42]  Ayush Agrawal,et al.  First Steps Towards Translating HZD Control of Bipedal Robots to Decentralized Control of Exoskeletons , 2017, IEEE Access.

[43]  Robert D. Gregg,et al.  Hybrid invariance and stability of a feedback linearizing controller for powered prostheses , 2015, 2015 American Control Conference (ACC).

[44]  Robert D. Gregg,et al.  Decentralized Feedback Controllers for Robust Stabilization of Periodic Orbits of Hybrid Systems: Application to Bipedal Walking , 2017, IEEE Transactions on Control Systems Technology.

[45]  H. Khalil,et al.  High-Gain Observers in the Presence of Measurement Noise: A Switched-Gain Approach , 2008 .

[46]  P. de Leva Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. , 1996, Journal of biomechanics.

[47]  Yan Wang,et al.  Feasibility analysis of the bilinear matrix inequalities with an application to multi-objective nonlinear observer design , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[48]  K. Goh,et al.  Robust synthesis via bilinear matrix inequalities , 1996 .

[49]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[50]  David C. Post,et al.  The effects of foot geometric properties on the gait of planar bipeds walking under HZD-based control , 2014, Int. J. Robotics Res..

[51]  Y. Aoustin,et al.  Absolute orientation estimation based on high order sliding mode observer for a five link walking biped robot , 2006, International Workshop on Variable Structure Systems, 2006. VSS'06..

[52]  Aaron D. Ames,et al.  3D dynamic walking with underactuated humanoid robots: A direct collocation framework for optimizing hybrid zero dynamics , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[53]  Aaron D. Ames,et al.  Three-Dimensional Kneed Bipedal Walking: A Hybrid Geometric Approach , 2009, HSCC.

[54]  Koushil Sreenath,et al.  Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on MABEL , 2013, Int. J. Robotics Res..

[55]  최준호,et al.  On observer-based feedback stabilization of periodic orbits in bipedal locomotion , 2007 .

[56]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[57]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .