Role of the morphology and the dehydroxylation of metakaolins on geopolymerization

[1]  Waltraud M. Kriven,et al.  Composite Cold Ceramic Geopolymer in a Refractory Application , 2012 .

[2]  Waltraud M. Kriven,et al.  Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites , 2012 .

[3]  J. Deja,et al.  Spectroscopic studies of alkaline activated slag geopolymers , 2009 .

[4]  Henri Van Damme,et al.  Geopolymers from Algerian metakaolin. Influence of secondary minerals , 2009 .

[5]  Z. Sobalík,et al.  Metal Ions as Probes for Characterization of Geopolymer Materials , 2008 .

[6]  Glykeria Kakali,et al.  Dissolution of aluminosilicate minerals and by-products in alkaline media , 2007 .

[7]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[8]  Reid F. Cooper,et al.  Geopolymer matrices with improved hydrothermal corrosion resistance for high-temperature applications , 2007 .

[9]  Grant C. Lukey,et al.  Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C , 2007 .

[10]  Catherine L. Nicholson,et al.  The composition range of aluminosilicate geopolymers , 2005 .

[11]  A. Aguado,et al.  Fluidity of cement pastes with mineral admixtures and superplasticizer—A study based on the Marsh cone test , 1999 .

[12]  J. Davidovits Geopolymers , 1991 .

[13]  Nicolas Roussel,et al.  The marsh cone as a viscometer: Theoretical analysis and practical limits , 2005 .

[14]  Mark E. Smith,et al.  Multinuclear solid-state NMR of inorganic materials , 2002 .

[15]  J. Wastiels,et al.  Low-temperature synthesized aluminosilicate glasses , 1996 .