Brownian dynamics without Green's functions.

We develop a Fluctuating Immersed Boundary (FIB) method for performing Brownian dynamics simulations of confined particle suspensions. Unlike traditional methods which employ analytical Green's functions for Stokes flow in the confined geometry, the FIB method uses a fluctuating finite-volume Stokes solver to generate the action of the response functions "on the fly." Importantly, we demonstrate that both the deterministic terms necessary to capture the hydrodynamic interactions among the suspended particles, as well as the stochastic terms necessary to generate the hydrodynamically correlated Brownian motion, can be generated by solving the steady Stokes equations numerically only once per time step. This is accomplished by including a stochastic contribution to the stress tensor in the fluid equations consistent with fluctuating hydrodynamics. We develop novel temporal integrators that account for the multiplicative nature of the noise in the equations of Brownian dynamics and the strong dependence of the mobility on the configuration for confined systems. Notably, we propose a random finite difference approach to approximating the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. Through comparisons with analytical and existing computational results, we numerically demonstrate the ability of the FIB method to accurately capture both the static (equilibrium) and dynamic properties of interacting particles in flow.

[1]  Hiroshi Noguchi,et al.  Particle-based mesoscale hydrodynamic techniques , 2006, cond-mat/0610890.

[2]  Martin R. Maxey,et al.  Dynamics of concentrated suspensions of non-colloidal particles in Couette flow , 2010, Journal of Fluid Mechanics.

[3]  Aleksandar Donev,et al.  Metropolis Integration Schemes for Self-Adjoint Diffusions , 2013, Multiscale Model. Simul..

[4]  J. Crocker Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres , 1997 .

[5]  C. Beenakker Ewald sum of the Rotne-Prager tensor , 1986 .

[6]  John F. Brady,et al.  Accelerated Stokesian dynamics: Brownian motion , 2003 .

[7]  Boyce E. Griffith,et al.  Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method , 2009 .

[8]  Boyce E. Griffith,et al.  Simulating an Elastic Ring with Bend and Twist by an Adaptive Generalized Immersed Boundary Method , 2012 .

[9]  A. Martin-Löf,et al.  Fluctuating hydrodynamics and Brownian motion , 1973 .

[10]  Paul J. Atzberger,et al.  A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales , 2007, J. Comput. Phys..

[11]  Dick Bedeaux,et al.  Brownian motion and fluctuating hydrodynamics , 1974 .

[12]  Rahul Kekre,et al.  Comparison of the static and dynamic properties of a semiflexible polymer using lattice Boltzmann and Brownian-dynamics simulations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Aleksandar Donev,et al.  Diffusive transport by thermal velocity fluctuations. , 2011, Physical review letters.

[14]  Boyce E. Griffith,et al.  Inertial coupling method for particles in an incompressible fluctuating fluid , 2012, 1212.6427.

[15]  Charles S. Peskin,et al.  Dynamics of a Closed Rod with Twist and Bend in Fluid , 2008, SIAM J. Sci. Comput..

[16]  Hajime Tanaka,et al.  Key role of hydrodynamic interactions in colloidal gelation. , 2010, Physical review letters.

[17]  The importance of hydrodynamic fluctuations for diffusion in liquids , 2013 .

[18]  Alejandro L. Garcia,et al.  Enhancement of diffusive transport by non-equilibrium thermal fluctuations , 2011, 1103.5244.

[19]  C. W. Gardiner,et al.  Adiabatic elimination in stochastic systems. III. Application to renormalization-group transformations of the time-dependent Ginsburg-Landau model , 1984 .

[20]  K. Hinsen,et al.  Stokes drag on conglomerates of spheres , 1995 .

[21]  C. Ybert,et al.  Dynamic clustering in active colloidal suspensions with chemical signaling. , 2012, Physical review letters.

[22]  A. Ladd,et al.  Lattice Boltzmann Simulations of Soft Matter Systems , 2008, 0803.2826.

[23]  Jingfang Huang,et al.  A fast algorithm for Brownian dynamics simulation with hydrodynamic interactions , 2013, Math. Comput..

[24]  J. Brady,et al.  The hydrodynamics of confined dispersions , 2011, Journal of Fluid Mechanics.

[25]  Michael J. Shelley,et al.  Applying a second-kind boundary integral equation for surface tractions in Stokes flow , 2011, J. Comput. Phys..

[26]  John B. Bell,et al.  Staggered Schemes for Fluctuating Hydrodynamics , 2012, Multiscale Model. Simul..

[27]  Ryoichi Yamamoto,et al.  A Numerical Model for Brownian Particles Fluctuating in Incompressible Fluids , 2008 .

[28]  J. García de la Torre,et al.  Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. , 2011, Biophysical journal.

[29]  R. G. Cox,et al.  Slow viscous motion of a sphere parallel to a plane wall—I Motion through a quiescent fluid , 1967 .

[30]  R. Delgado‐Buscalioni,et al.  Minimal model for acoustic forces on Brownian particles. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Konrad Hinsen,et al.  HYDROLIB: a library for the evaluation of hydrodynamic interactions in colloidal suspensions , 1995 .

[32]  N. Patankar,et al.  Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations , 2004 .

[33]  J. Brady,et al.  Particle motion between parallel walls: Hydrodynamics and simulation , 2010 .

[34]  M. Berger,et al.  An Adaptive Version of the Immersed Boundary Method , 1999 .

[35]  M. Fixman,et al.  Simulation of polymer dynamics: Dynamic viscosity , 1978 .

[36]  B. Alder,et al.  Tethered DNA dynamics in shear flow. , 2009, The Journal of chemical physics.

[37]  J. Chu,et al.  Fluctuating hydrodynamics for multiscale simulation of inhomogeneous fluids: mapping all-atom molecular dynamics to capillary waves. , 2011, The Journal of chemical physics.

[38]  Aleksandar Donev,et al.  The Stokes-Einstein relation at moderate Schmidt number. , 2013, The Journal of chemical physics.

[39]  E. J. Hinch,et al.  Application of the Langevin equation to fluid suspensions , 1975, Journal of Fluid Mechanics.

[40]  J. Chu,et al.  Fluctuating hydrodynamics for multiscale modeling and simulation: energy and heat transfer in molecular fluids. , 2012, The Journal of chemical physics.

[41]  Boyce E. Griffith,et al.  An adaptive, formally second order accurate version of the immersed boundary method , 2007, J. Comput. Phys..

[42]  A. Ladd,et al.  Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries. , 2005, The Journal of chemical physics.

[43]  Thomas G. Fai,et al.  Low Mach Number Fluctuating Hydrodynamics of Diffusively Mixing Fluids , 2012, 1212.2644.

[44]  Peter Huang,et al.  Direct measurement of anisotropic near-wall hindered diffusion using total internal reflection velocimetry. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[46]  Paul J. Atzberger,et al.  Spatially adaptive stochastic methods for fluid-structure interactions subject to thermal fluctuations in domains with complex geometries , 2013, J. Comput. Phys..

[47]  M. Maxey,et al.  Force-coupling method for particulate two-phase flow: stokes flow , 2003 .

[48]  Leslie Greengard,et al.  Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..

[49]  Eric E. Keaveny,et al.  Fluctuating force-coupling method for simulations of colloidal suspensions , 2013, J. Comput. Phys..

[50]  D. Liu,et al.  Force-coupling method for flows with ellipsoidal particles , 2009, J. Comput. Phys..

[51]  Assyr Abdulle,et al.  Weak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations , 2013, SIAM J. Sci. Comput..

[52]  J. Blake,et al.  A note on the image system for a stokeslet in a no-slip boundary , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.

[53]  Aleksandar Donev,et al.  Stochastic hard-sphere dynamics for hydrodynamics of nonideal fluids. , 2008, Physical review letters.

[54]  P. Atzberger SYSTEMATIC STOCHASTIC REDUCTION OF INERTIAL FLUID-STRUCTURE INTERACTIONS SUBJECT TO THERMAL FLUCTUATIONS , 2022 .

[55]  Eligiusz Wajnryb,et al.  Generalization of the Rotne–Prager–Yamakawa mobility and shear disturbance tensors , 2013, Journal of Fluid Mechanics.

[56]  Leslie Greengard,et al.  A fast multipole method for the three-dimensional Stokes equations , 2008, J. Comput. Phys..

[57]  Leslie Greengard,et al.  An Integral Equation Approach to the Incompressible Navier-Stokes Equations in Two Dimensions , 1998, SIAM J. Sci. Comput..

[58]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[59]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[60]  John F. Brady,et al.  Simulation of hydrodynamically interacting particles near a no-slip boundary , 2007 .

[61]  A. Donev,et al.  Reversible Diffusion by Thermal Fluctuations , 2013, 1306.3158.

[62]  Rahul Kekre,et al.  Comparison of lattice-Boltzmann and brownian-dynamics simulations of polymer migration in confined flows. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Paul J. Atzberger,et al.  Stochastic Reductions for Inertial Fluid-Structure Interactions Subject to Thermal Fluctuations , 2012, SIAM J. Appl. Math..

[64]  J. García de la Torre,et al.  Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. , 2000, Biophysical journal.

[65]  Neelesh A. Patankar,et al.  Fluctuating Immersed Material (FIMAT) Dynamics for the Direct Simulation of the Brownian Motion of Particles , 2006 .

[66]  T. Schaffter Numerical Integration of SDEs: A Short Tutorial , 2010 .

[67]  Boyce E. Griffith,et al.  An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner , 2009, J. Comput. Phys..

[68]  Paul J. Atzberger,et al.  A note on the correspondence of an immersed boundary method incorporating thermal fluctuations with Stokesian-Brownian dynamics , 2007 .

[69]  Juan J. de Pablo,et al.  Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions , 2002 .

[70]  David J. Pine,et al.  Living Crystals of Light-Activated Colloidal Surfers , 2013, Science.

[71]  Juan J de Pablo,et al.  An immersed boundary method for Brownian dynamics simulation of polymers in complex geometries: application to DNA flowing through a nanoslit with embedded nanopits. , 2012, The Journal of chemical physics.

[72]  H. Ch. Öttinger,et al.  Beyond Equilibrium Thermodynamics , 2005 .

[73]  David C. Schwartz,et al.  Effect of confinement on DNA dynamics in microfluidic devices , 2003 .

[74]  Libchaber,et al.  Confined Brownian motion. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[75]  M. Fixman,et al.  Simulation of polymer dynamics. I. General theory , 1978 .

[76]  Neelesh A. Patankar,et al.  The immersed molecular finite element method , 2012 .

[77]  Paul J. Atzberger,et al.  Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations , 2009, J. Comput. Phys..

[78]  Paul Grassia,et al.  Computer simulations of Brownian motion of complex systems , 1995, Journal of Fluid Mechanics.

[79]  David G. Grier,et al.  Brownian dynamics of a sphere between parallel walls , 2001 .

[80]  Boyce E. Griffith,et al.  Temporal integrators for fluctuating hydrodynamics , 2012, 1212.1033.

[81]  Zerner Neuere Methoden und Ergebnisse in der Hydrodynamik , 1928 .

[82]  Jean-Noël Roux,et al.  Brownian particles at different times scales: a new derivation of the Smoluchowski equation , 1992 .

[83]  Thomas G. Fai,et al.  A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick’s law , 2013, 1312.1894.

[84]  H. Hasimoto On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres , 1959, Journal of Fluid Mechanics.

[85]  M. Hütter,et al.  Fluctuation-dissipation theorem, kinetic stochastic integral, and efficient simulations , 1998 .

[86]  Costas Tsouris,et al.  Brownian motion in confinement. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  N. Patankar,et al.  A minimally-resolved immersed boundary model for reaction-diffusion problems. , 2013, The Journal of chemical physics.

[88]  Peter Kulchyski and , 2015 .

[89]  M. Maxey,et al.  Localized force representations for particles sedimenting in Stokes flow , 2001 .

[90]  C. Gardiner Adiabatic elimination in stochastic systems. I: Formulation of methods and application to few-variable systems , 1984 .

[91]  Jan V. Sengers,et al.  Hydrodynamic Fluctuations in Fluids and Fluid Mixtures , 2006 .

[92]  John F. Brady,et al.  Accelerated Stokesian Dynamics simulations , 2001, Journal of Fluid Mechanics.

[93]  P. Atzberger Incorporating Shear into Stochastic Eulerian Lagrangian Methods for Rheological Studies of Complex Fluids and Soft Materials , 2013, ArXiv.

[94]  M. Fixman Construction of Langevin forces in the simulation of hydrodynamic interaction , 1986 .

[95]  Florencio Balboa Usabiaga,et al.  Inertial coupling for point particle fluctuating hydrodynamics , 2013, J. Comput. Phys..

[96]  Dynamics of a trapped Brownian particle in shear flows. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  S. Prager,et al.  Variational Treatment of Hydrodynamic Interaction in Polymers , 1969 .

[98]  Burkhard Dünweg,et al.  Implicit and explicit solvent models for the simulation of a single polymer chain in solution: Lattice Boltzmann versus Brownian dynamics. , 2009, The Journal of chemical physics.

[99]  W. Zimmermann,et al.  Dynamics of two trapped Brownian particles: Shear-induced cross-correlations , 2010, The European physical journal. E, Soft matter.

[100]  Jhih-Wei Chu,et al.  Bridging fluctuating hydrodynamics and molecular dynamics simulations of fluids. , 2009, The Journal of chemical physics.

[101]  Juan J de Pablo,et al.  Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry. , 2007, Physical review letters.

[102]  Dharshi Devendran,et al.  An immersed boundary energy-based method for incompressible viscoelasticity , 2012, J. Comput. Phys..

[103]  Xiaoliang Wan,et al.  Comput. Methods Appl. Mech. Engrg. , 2010 .

[104]  M E Cates,et al.  Singular forces and pointlike colloids in lattice Boltzmann hydrodynamics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.