Chromatin-based epigenetics of adult subventricular zone neural stem cells

In specific regions of the adult mammalian brain, neural stem cells (NSCs) generate new neurons throughout life. Emerging evidence indicate that chromatin-based transcriptional regulation is a key epigenetic mechanism for the life-long function of adult NSCs. In the adult mouse brain, NSCs in the subventricular zone (SVZ) retain the ability to produce both neurons and glia for the life of the animal. In this review, we discuss the origin and function of SVZ NSCs as they relate to key epigenetic concepts of development and potential underlying mechanism of chromatin-based transcriptional regulation. A central point of discussion is how SVZ NSCs – which possess many characteristics of mature, non-neurogenic astrocytes – maintain a “youthful” ability to produce both neuronal and glial lineages. In addition to reviewing data regarding the function of chromatin-modifying factors in SVZ neurogenesis, we incorporate our growing understanding that long non-coding RNAs serve as an important element to chromatin-based transcriptional regulation, including that of SVZ NSCs. Discoveries regarding the epigenetic mechanisms of adult SVZ NSCs may provide key insights into fundamental principles of adult stem cell biology as well as the more complex and dynamic developmental environment of the embryonic brain.

[1]  C. Lois,et al.  Long-distance neuronal migration in the adult mammalian brain. , 1994, Science.

[2]  J. Davie,et al.  Multiple functions of dynamic histone acetylation , 1994, Journal of cellular biochemistry.

[3]  A. Álvarez-Buylla,et al.  Network of tangential pathways for neuronal migration in adult mammalian brain. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Arturo Alvarez-Buylla,et al.  Chain Migration of Neuronal Precursors , 1996, Science.

[5]  S. Mcconnell,et al.  Restriction of Late Cerebral Cortical Progenitors to an Upper-Layer Fate , 1996, Neuron.

[6]  J. García-Verdugo,et al.  Cellular Composition and Three-Dimensional Organization of the Subventricular Germinal Zone in the Adult Mammalian Brain , 1997, The Journal of Neuroscience.

[7]  Hynek Wichterle,et al.  Direct Evidence for Homotypic, Glia-Independent Neuronal Migration , 1997, Neuron.

[8]  D. van der Kooy,et al.  Transforming Growth Factor-α Null and Senescent Mice Show Decreased Neural Progenitor Cell Proliferation in the Forebrain Subependyma , 1997, The Journal of Neuroscience.

[9]  M. Greenberg,et al.  Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. , 1997, Science.

[10]  David Newsome,et al.  Gene Dosage–Dependent Embryonic Development and Proliferation Defects in Mice Lacking the Transcriptional Integrator p300 , 1998, Cell.

[11]  J. García-Verdugo,et al.  Architecture and cell types of the adult subventricular zone: in search of the stem cells. , 1998, Journal of neurobiology.

[12]  Daniel A. Lim,et al.  Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain , 1999, Cell.

[13]  D. Steindler,et al.  Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Ishii,et al.  Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein , 2000, Mechanisms of Development.

[15]  S. Goderie,et al.  Timing of CNS Cell Generation A Programmed Sequence of Neuron and Glial Cell Production from Isolated Murine Cortical Stem Cells , 2000, Neuron.

[16]  S. Mcconnell,et al.  Progressive restriction in fate potential by neural progenitors during cerebral cortical development. , 2000, Development.

[17]  M. Götz,et al.  Characterization of CNS precursor subtypes and radial glia. , 2001, Developmental biology.

[18]  T. Weissman,et al.  Neurons derived from radial glial cells establish radial units in neocortex , 2001, Nature.

[19]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[20]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[21]  Dmitri A. Nusinow,et al.  Xist RNA and the mechanism of X chromosome inactivation. , 2002, Annual review of genetics.

[22]  Magdalena Götz,et al.  Radial glia: multi-purpose cells for vertebrate brain development , 2002, Trends in Neurosciences.

[23]  Anne Baron-Van Evercooren,et al.  Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Arturo Alvarez-Buylla,et al.  Maturation and Death of Adult-Born Olfactory Bulb Granule Neurons: Role of Olfaction , 2002, The Journal of Neuroscience.

[25]  Alan Carleton,et al.  Becoming a new neuron in the adult olfactory bulb , 2003, Nature Neuroscience.

[26]  S. Morrison,et al.  Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation , 2003, Nature.

[27]  K. Jin,et al.  Neurogenesis and aging: FGF‐2 and HB‐EGF restore neurogenesis in hippocampus and subventricular zone of aged mice , 2003, Aging cell.

[28]  J. Sotelo,et al.  Electron microscope study on the development of ciliary components of the neural epithelium of the chick embryo , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[29]  L. Stensaas,et al.  Light microscopy of glial cells in turtles and birds , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[30]  F. Gage,et al.  Epigenetic control of neural stem cell fate. , 2004, Current opinion in genetics & development.

[31]  G. Fishell,et al.  Radial Glia Serve as Neuronal Progenitors in All Regions of the Central Nervous System , 2004, Neuron.

[32]  J. García-Verdugo,et al.  Radial glia give rise to adult neural stem cells in the subventricular zone. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A. Maslov,et al.  Neural Stem Cell Detection, Characterization, and Age- Related Changes in the Subventricular Zone of Mice , 2022 .

[34]  Sara G. Becker-Catania,et al.  A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis , 2005, Nature Neuroscience.

[35]  M. Nilsson,et al.  Astrocyte activation and reactive gliosis , 2005, Glia.

[36]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[37]  M. Götz,et al.  The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. , 2005, Current topics in developmental biology.

[38]  D. Steindler,et al.  Phenotypic and functional characterization of adult brain neuropoiesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Thomas A Milne,et al.  Regulation of MLL1 H3K4 methyltransferase activity by its core components , 2006, Nature Structural &Molecular Biology.

[40]  I. Blumcke,et al.  Histone deacetylase inhibitors increase neuronal differentiation in adult forebrain precursor cells , 2007, Experimental Brain Research.

[41]  Oscar Gonzalez-Perez,et al.  Origin of Oligodendrocytes in the Subventricular Zone of the Adult Brain , 2006, The Journal of Neuroscience.

[42]  Felix Naef,et al.  In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis , 2006, Molecular and Cellular Neuroscience.

[43]  J. Rubenstein,et al.  Dlx1 and Dlx2 Control Neuronal versus Oligodendroglial Cell Fate Acquisition in the Developing Forebrain , 2007, Neuron.

[44]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[45]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[46]  Guoqiang Sun,et al.  Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation , 2007, Proceedings of the National Academy of Sciences.

[47]  T. Swigut,et al.  H3K27 Demethylases, at Long Last , 2007, Cell.

[48]  B. Grothe,et al.  Functional Properties of Neurons Derived from In Vitro Reprogrammed Postnatal Astroglia , 2007, The Journal of Neuroscience.

[49]  M. Ekker,et al.  Distinct cis-Regulatory Elements from the Dlx1/Dlx2 Locus Mark Different Progenitor Cell Populations in the Ganglionic Eminences and Different Subtypes of Adult Cortical Interneurons , 2007, The Journal of Neuroscience.

[50]  Arturo Alvarez-Buylla,et al.  Mosaic Organization of Neural Stem Cells in the Adult Brain , 2007, Science.

[51]  G. Natoli,et al.  The Histone H3 Lysine-27 Demethylase Jmjd3 Links Inflammation to Inhibition of Polycomb-Mediated Gene Silencing , 2007, Cell.

[52]  Howard Y. Chang,et al.  Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs , 2007, Cell.

[53]  Pierre Vanderhaeghen,et al.  An intrinsic mechanism of corticogenesis from embryonic stem cells , 2008, Nature.

[54]  J. García-Verdugo,et al.  A specialized vascular niche for adult neural stem cells. , 2008, Cell stem cell.

[55]  A. Kriegstein,et al.  Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis , 2008, The Journal of comparative neurology.

[56]  J. MacDonald,et al.  Histone deacetylases 1 and 2 are expressed at distinct stages of neuro‐glial development , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[57]  J. García-Verdugo,et al.  Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells , 2008, Nature Neuroscience.

[58]  B. Roysam,et al.  Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. , 2008, Cell stem cell.

[59]  Jeannie T. Lee,et al.  Polycomb Proteins Targeted by a Short Repeat RNA to the Mouse X Chromosome , 2008, Science.

[60]  J. García-Verdugo,et al.  Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. , 2008, Cell stem cell.

[61]  A. Álvarez-Buylla,et al.  10 Adult Subventricular Zone and Olfactory Bulb Neurogenesis , 2008 .

[62]  John T. Dimos,et al.  Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. , 2009, Genes & development.

[63]  J. Disterhoft,et al.  Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. , 2009, Nature neuroscience.

[64]  Arnold Kriegstein,et al.  The glial nature of embryonic and adult neural stem cells. , 2009, Annual review of neuroscience.

[65]  C. Greer,et al.  Adult neurogenesis and the olfactory system , 2009, Progress in Neurobiology.

[66]  J. Rinn,et al.  Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression , 2009, Proceedings of the National Academy of Sciences.

[67]  E. Olson,et al.  Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development , 2009, Proceedings of the National Academy of Sciences.

[68]  I. Cohen,et al.  The DLX1and DLX2 genes and susceptibility to autism spectrum disorders , 2009, European Journal of Human Genetics.

[69]  Dafydd G. Thomas,et al.  Bmi-1 over-expression in neural stem/progenitor cells increases proliferation and neurogenesis in culture but has little effect on these functions in vivo. , 2009, Developmental biology.

[70]  J. García-Verdugo,et al.  Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells , 2009, Nature.

[71]  Howard Y. Chang,et al.  Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes , 2010, Science.

[72]  M. Doughty,et al.  Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells , 2011, BMC Neuroscience.

[73]  Yi Zhang,et al.  Dnmt3a-Dependent Nonpromoter DNA Methylation Facilitates Transcription of Neurogenic Genes , 2010, Science.

[74]  A. Tarakhovsky,et al.  Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex , 2010, Proceedings of the National Academy of Sciences.

[75]  Julie A. Law,et al.  Establishing, maintaining and modifying DNA methylation patterns in plants and animals , 2010, Nature Reviews Genetics.

[76]  Seunghee Lee,et al.  Crucial roles of histone-modifying enzymes in mediating neural cell-type specification , 2010, Current Opinion in Neurobiology.

[77]  W. Wurst,et al.  The specific role of histone deacetylase 2 in adult neurogenesis. , 2010, Neuron glia biology.

[78]  Y. Gotoh,et al.  Epigenetic control of neural precursor cell fate during development , 2010, Nature Reviews Neuroscience.

[79]  M. Götz,et al.  Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons , 2010, PLoS biology.

[80]  Aviv Regev,et al.  Chromatin signature of embryonic pluripotency is established during genome activation , 2010, Nature.

[81]  Eugene Bolotin,et al.  The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. , 2011, Molecular cell.

[82]  Howard Y. Chang,et al.  A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression , 2011, Nature.

[83]  Rebecca A. Ihrie,et al.  Persistent Sonic Hedgehog Signaling in Adult Brain Determines Neural Stem Cell Positional Identity , 2011, Neuron.

[84]  D. Bartel,et al.  Conserved Function of lincRNAs in Vertebrate Embryonic Development despite Rapid Sequence Evolution , 2011, Cell.

[85]  Ryan A. Flynn,et al.  A unique chromatin signature uncovers early developmental enhancers in humans , 2011, Nature.

[86]  G. Ming,et al.  Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions , 2011, Neuron.

[87]  Andrew J. Bannister,et al.  Regulation of chromatin by histone modifications , 2011, Cell Research.

[88]  J. Rinn,et al.  lincRNAs act in the circuitry controlling pluripotency and differentiation , 2011, Nature.

[89]  David H Rowitch,et al.  Astrocytes and disease: a neurodevelopmental perspective. , 2012, Genes & development.

[90]  Fred H. Gage,et al.  Local generation of glia is a major astrocyte source in postnatal cortex , 2012, Nature.

[91]  D. Manz,et al.  Spatiotemporal Changes to the Subventricular Zone Stem Cell Pool through Aging , 2012, The Journal of Neuroscience.

[92]  A. Álvarez-Buylla,et al.  Adult neural stem cells bridge their niche. , 2012, Cell stem cell.

[93]  J. Wysocka,et al.  Enhancers as information integration hubs in development: lessons from genomics. , 2012, Trends in genetics : TIG.

[94]  A. Álvarez-Buylla,et al.  Glial Nature of Adult Neural Stem Cells: Neurogenic Competence in Adult Astrocytes , 2012 .

[95]  Khadar Abdi,et al.  Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4 , 2013, Nature.

[96]  J. Wysocka,et al.  Modification of enhancer chromatin: what, how, and why? , 2013, Molecular cell.

[97]  S. Foti,et al.  HDAC inhibitors dysregulate neural stem cell activity in the postnatal mouse brain , 2013, International Journal of Developmental Neuroscience.

[98]  Howard Cedar,et al.  DNA methylation dynamics in health and disease , 2013, Nature Structural &Molecular Biology.

[99]  L. Tsai,et al.  Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. [corrected]. , 2013, Cell stem cell.

[100]  Yang Shi,et al.  Emerging roles for chromatin as a signal integration and storage platform , 2013, Nature Reviews Molecular Cell Biology.

[101]  Jun S. Song,et al.  Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. , 2013, Cell stem cell.

[102]  A. Álvarez-Buylla,et al.  Lineage progression from stem cells to new neurons in the adult brain ventricular-subventricular zone , 2013, Cell cycle.

[103]  Zachary D. Smith,et al.  Tet1 regulates adult hippocampal neurogenesis and cognition. , 2013, Cell stem cell.