Memristive Circuits for LDPC Decoding

We present design principles for implementing decoders for low-density parity check codes in CMOL-type memristive circuits. The programmable nonvolatile connectivity enabled by the nanowire arrays in such circuits is used to map the parity check matrix of an LDPC code in the decoder, while decoding operations are realized by a cellular CMOS circuit structure. We perform detailed performance analysis and circuit simulations of example decoders, and estimate how CMOL and memristor characteristics such as the memristor OFF/ON resistance ratio, nanowire resistance, and the total capacitance of the nanowire array affect decoder specification and performance. We also analyze how variation in circuit characteristics and persistent device defects affect the decoders.

[1]  Jussi H. Poikonen,et al.  Large-Scale Memristive Associative Memories , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[2]  William E. Ryan,et al.  Quasi-Cyclic Generalized LDPC Codes With Low Error Floors , 2007, IEEE Trans. Commun..

[3]  E. Lehtonen,et al.  Arithmetic operations within memristor-based analog memory , 2010, 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010).

[4]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[5]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[6]  L. Chua Memristor-The missing circuit element , 1971 .

[7]  R. Williams,et al.  Nano/CMOS architectures using a field-programmable nanowire interconnect , 2007 .

[8]  Xin-Yu Shih,et al.  A real-time programmable LDPC decoder chip for arbitrary QC-LDPC parity check matrices , 2009, 2009 IEEE Asian Solid-State Circuits Conference.

[9]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[10]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[11]  Joachim Neves Rodrigues,et al.  Ultra-Low-Power Error Correction Circuits: Technology Scaling and Sub-$V_{ \rm T}$ Operation , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[12]  Andreas Mayr,et al.  CrossNets: High‐Performance Neuromorphic Architectures for CMOL Circuits , 2003, Annals of the New York Academy of Sciences.

[13]  Karthik Ganesan,et al.  Choosing “green” codes by simulation-based modeling of implementations , 2012, 2012 IEEE Global Communications Conference (GLOBECOM).

[14]  Jussi H. Poikonen,et al.  On Synthesis of Boolean Expressions for Memristive Devices Using Sequential Implication Logic , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[15]  J. Poikonen,et al.  Erratum for Two memristors suffice to compute all Boolean functions , 2010 .

[16]  Ligang Gao,et al.  High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm , 2011, Nanotechnology.

[17]  Benjamin Peter Smith,et al.  Error-correcting Codes for Fibre-optic Communication Systems , 2012 .

[18]  Xiaohu You,et al.  New insights into weighted bit-flipping decoding , 2009, IEEE Transactions on Communications.

[19]  Uri C. Weiser,et al.  Memristor-Based Material Implication (IMPLY) Logic: Design Principles and Methodologies , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[20]  Dmitri B Strukov,et al.  Four-dimensional address topology for circuits with stacked multilayer crossbar arrays , 2009, Proceedings of the National Academy of Sciences.

[21]  Jussi H. Poikonen,et al.  Memristive Stateful Logic , 2014 .

[22]  D. Strukov,et al.  CMOL: Devices, Circuits, and Architectures , 2006 .

[23]  Jussi H. Poikonen,et al.  A cellular computing architecture for parallel memristive stateful logic , 2014, Microelectron. J..

[24]  Siddharth Gaba,et al.  Nanoscale resistive memory with intrinsic diode characteristics and long endurance , 2010 .

[25]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[26]  Narayan Srinivasa,et al.  A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. , 2012, Nano letters.

[27]  W. Lu,et al.  Programmable Resistance Switching in Nanoscale Two-terminal Devices , 2008 .

[28]  G. Snider,et al.  Self-organized computation with unreliable, memristive nanodevices , 2007 .

[29]  Wonyong Sung,et al.  VLSI Implementation of a High-Throughput Soft-Bit-Flipping Decoder for Geometric LDPC Codes , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[30]  Robert G. Gallager,et al.  The random coding bound is tight for the average code (Corresp.) , 1973, IEEE Trans. Inf. Theory.