64-Bit and 128-bit DX random number generators

Extending 32-bit DX generators introduced by Deng and Xu (ACM Trans Model Comput Simul 13:299–309, 2003), we perform an extensive computer search for classes of 64-bit and 128-bit DX generators of large orders. The period lengths of these high resolution DX generators are ranging from 101915 to 1058221. The software implementation of these generators can be developed for 64-bit or 128-bit hardware. The great empirical performances of DX generators have been confirmed by an extensive battery of tests in the TestU01 package. These high resolution DX generators can be useful to perform large scale simulations in scientific investigations for various computer systems.

[1]  J. Gentle Random number generation and Monte Carlo methods , 1998 .

[2]  Pierre L'Ecuyer,et al.  Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..

[3]  Pierre L'Ecuyer,et al.  A search for good multiple recursive random number generators , 1993, TOMC.

[4]  Lih-Yuan Deng,et al.  Generation of Uniform Variates from Several Nearly Uniformly Distributed Variables , 1990 .

[5]  C. Pomerance,et al.  Prime Numbers: A Computational Perspective , 2002 .

[6]  Pierre L'Ecuyer,et al.  Combined Multiple Recursive Random Number Generators , 1995, Oper. Res..

[7]  Wayne H. Enright,et al.  Robust and reliable defect control for Runge-Kutta methods , 2007, TOMS.

[8]  W. H. Payne,et al.  Coding the Lehmer pseudo-random number generator , 1969, CACM.

[9]  Pierre L'Ecuyer,et al.  Efficient and portable combined random number generators , 1988, CACM.

[10]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 2 , 1981 .

[11]  Dennis K. J. Lin,et al.  Random Number Generation for the New Century , 2000 .

[12]  George Marsaglia,et al.  Toward a universal random number generator , 1987 .

[13]  Haya Freedman,et al.  Introduction to finite fields and their applications (revised edition) , by Rudolf Lidl and Harald Niederreiter. Pp. 416. £29.95. 1994. ISBN 0-521-46094-8 (Cambridge University Press) , 1995, The Mathematical Gazette.

[14]  Lih-Yuan Deng,et al.  STATISTICAL JUSTIFICATION OF COMBINATION GENERATORS , 1997 .

[15]  Wolfgang Hörmann,et al.  A note on the quality of random variates generated by the ratio of uniforms method , 1994, TOMC.

[16]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[17]  Ted G. Lewis,et al.  Generalized Feedback Shift Register Pseudorandom Number Algorithm , 1973, JACM.

[18]  Albert J. Kinderman,et al.  Computer Generation of Random Variables Using the Ratio of Uniform Deviates , 1977, TOMS.

[19]  Lih-Yuan Deng,et al.  Generalized Mersenne Prime Number and Its Application to Random Number Generation , 2004 .

[20]  H. C. Williams,et al.  Some primes of the form (ⁿ-1)/(-1) , 1979 .

[21]  Lih-Yuan Deng,et al.  A system of high-dimensional, efficient, long-cycle and portable uniform random number generators , 2003, TOMC.

[22]  Pierre L'Ecuyer,et al.  TestU01: A C library for empirical testing of random number generators , 2006, TOMS.

[23]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[24]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[25]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.

[26]  I. D. Hill,et al.  Correction: Algorithm AS 183: An Efficient and Portable Pseudo-Random Number Generator , 1982 .

[27]  John Brillhart Factorizations of bn [plus or minus symbol] 1, b=2, 3, 5, 6, 7, 10, 11, 12 up to high powers , 1983 .

[28]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[29]  George Marsaglia,et al.  The 64-bit universal RNG , 2004 .

[30]  Jurgen A. Doornik Conversion of high-period random numbers to floating point , 2007, TOMC.

[31]  I. Damgård,et al.  Average case error estimates for the strong probable prime test , 1993 .

[32]  Makoto Matsumoto,et al.  Common defects in initialization of pseudorandom number generators , 2007, TOMC.

[33]  Takuji Nishimura,et al.  Tables of 64-bit Mersenne twisters , 2000, TOMC.

[34]  Lih-Yuan Deng,et al.  Efficient and portable multiple recursive generators of large order , 2005, TOMC.

[35]  Pierre L'Ecuyer,et al.  On the Deng-Lin random number generators and related methods , 2004, Stat. Comput..

[36]  Pierre L'Ecuyer,et al.  Improved long-period generators based on linear recurrences modulo 2 , 2004, TOMS.

[37]  I. D. Hill,et al.  An Efficient and Portable Pseudo‐Random Number Generator , 1982 .

[38]  Mei Ling Huang Recurrence relations for the r-distribution , 1990 .

[39]  Heleno Bolfarine,et al.  Population variance prediction under normal dynamic superpopulation models , 1989 .