Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope.

We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide-field line scan scanning laser ophthalmoscope (SLO), and a high-resolution microelectromechanical-systems-based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point-spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the psf. The retinal image was stabilized to within 18 microm 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images.

[1]  Stephen A. Burns,et al.  Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration. , 2000, Optics express.

[2]  Mary K. Hibbs-Brenner,et al.  Vertical-cavity surface-emitting laser arrays , 1995, Photonics West.

[3]  Masahiro Miura,et al.  GRADING OF INFRARED CONFOCAL SCANNING LASER TOMOGRAPHY AND VIDEO DISPLAYS OF DIGITIZED COLOR SLIDES IN EXUDATIVE AGE-RELATED MACULAR DEGENERATION , 2002, Retina.

[4]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  Stephen A. Burns,et al.  Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence , 2005, Vision Research.

[6]  P. Artal,et al.  Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator , 2005, Vision Research.

[7]  S Burns,et al.  Scanning laser reflectometry of retinal and subretinal tissues. , 2000, Optics express.

[8]  M. E. Hartnett,et al.  Infrared imaging of cystoid macular edema , 1999, Graefe's Archive for Clinical and Experimental Ophthalmology.

[9]  T. Keith Lyle INTERNATIONAL OPHTHALMOLOGY , 1958 .

[10]  Xin Hong,et al.  Requirements for segmented correctors for diffraction-limited performance in the human eye. , 2005, Optics express.

[11]  A. Gorea,et al.  New look at Bloch's law for contrast. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[12]  P. Artal,et al.  Adaptive-optics ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[13]  R. Webb Confocal optical microscopy , 1996 .

[14]  David R Williams,et al.  Effect of wavelength on in vivo images of the human cone mosaic. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  F. Delori,et al.  Spectral reflectance of the human ocular fundus. , 1989, Applied optics.

[16]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[17]  Steven M. Jones,et al.  High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. , 2006, Optics express.

[18]  A. Roorda,et al.  Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope. , 2004, Journal of biomedical optics.

[19]  David H Sliney,et al.  Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  Donald T. Miller,et al.  Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. , 2005, Optics express.

[21]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[22]  C L Trempe,et al.  Spatial extent of pigment epithelial detachments in age-related macular degeneration. , 1999, Ophthalmology.

[23]  D. X. Hammer,et al.  A Line-Scanning Laser Ophthalmoscope (LSLO) , 2003 .

[24]  Ann E Elsner,et al.  Improved contrast of subretinal structures using polarization analysis. , 2003, Investigative ophthalmology & visual science.

[25]  Teoman E. Ustun,et al.  Tracking adaptive optics scanning laser ophthalmoscope , 2006, SPIE BiOS.

[26]  A. Roorda,et al.  MEMS-based adaptive optics scanning laser ophthalmoscopy. , 2006, Optics letters.

[27]  S A Burns,et al.  Age-related changes in monochromatic wave aberrations of the human eye. , 2001, Investigative ophthalmology & visual science.

[28]  D. Norren,et al.  The Pathways of Light Measured in Fundus Reflectometry , 1996, Vision Research.

[29]  A. W. Dreher,et al.  Detecting AMD with Multiply Scattered Light Tomography , 2004, International Ophthalmology.

[30]  Stephen A. Burns,et al.  Infrared imaging of sub-retinal structures in the human ocular fundus , 1996, Vision Research.

[31]  Andreas Plesch,et al.  Optical Characteristics Of A Scanning Laser Ophthalmoscope , 1989, Optics & Photonics.

[32]  Daniel X Hammer,et al.  Compact scanning laser ophthalmoscope with high-speed retinal tracker. , 2003, Applied optics.

[33]  S A Burns,et al.  Reflectometry with a scanning laser ophthalmoscope. , 1992, Applied optics.

[34]  Bernard P. Gee,et al.  In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells. , 2006, Optics express.

[35]  Robert H. Webb,et al.  Tracking scanning laser ophthalmoscope (TSLO) , 2003, SPIE BiOS.

[36]  D. Van Norren,et al.  Spectral reflectance of the human eye , 1986, Vision Research.

[37]  John Magill,et al.  Image stabilization for scanning laser ophthalmoscopy. , 2002, Optics express.

[38]  Susana Marcos,et al.  Contrast improvement of confocal retinal imaging by use of phase-correcting plates. , 2002, Optics letters.

[39]  Pierre Léna,et al.  Retinal imaging with adaptive optics , 2001 .

[40]  R. Webb,et al.  Confocal scanning laser ophthalmoscope. , 1987, Applied optics.

[41]  Teoman E. Ustun,et al.  Tracking Adaptive Optics Scanning Laser Ophthalmoscope (TAOSLO) , 2005 .

[42]  Austin Roorda,et al.  Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy. , 2006, Optics express.

[43]  P Artal,et al.  Analysis of the performance of the Hartmann-Shack sensor in the human eye. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[44]  Steven M. Jones,et al.  Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. , 2005, Optics express.

[45]  R. D. Ferguson,et al.  Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging. , 2006, Optics express.

[46]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[47]  C. Dainty,et al.  Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. , 2006, Optics express.

[48]  A. Elsner,et al.  Characteristics of exudative age-related macular degeneration determined in vivo with confocal and indirect infrared imaging. , 1996, Ophthalmology.