Rendering lunar eclipses

Johannes Kepler first attributed the visibility of lunar eclipses to refraction in the Earth's atmosphere in his Astronomiae Pars Optica in 1604. We describe a method for rendering images of lunar eclipses including color contributions due to refraction, dispersion, and scattering in the Earth's atmosphere. We present an efficient model of refraction and scattering in the atmosphere, including contributions of suspended volcanic dusts which contribute to the observed variation in eclipse brightness and color. We propose a method for simulating camera exposure to allow direct comparison between rendered images and digital photographs. Images rendered with our technique are compared to photographs of the total lunar eclipse of February 21, 2008.

[1]  H. Jensen Night Rendering , 2000 .

[2]  Francisco J. Serón,et al.  Simulation of atmospheric phenomena , 2006, Comput. Graph..

[3]  Jean H. Meeus,et al.  Astronomical Algorithms , 1991 .

[4]  Siebren Y. van der Werf,et al.  Ray tracing and refraction in the modified US1976 atmosphere , 2003 .

[5]  Francisco J. Serón,et al.  Non-linear volume photon mapping , 2005, EGSR '05.

[6]  Tomoyuki Nishita,et al.  Display of the earth taking into account atmospheric scattering , 1993, SIGGRAPH.

[7]  R. Victor Klassen,et al.  Modeling the effect of the atmosphere on light , 1987, TOGS.

[8]  Michael Vollmer,et al.  Lunar eclipse photometry: absolute luminance measurements and modeling. , 2008, Applied optics.

[9]  Brian J. Thompson,et al.  Solar constant and air mass zero solar spectral irradiance tables , 1993 .

[10]  J. Hansen,et al.  Light illuminance and color in the Earth's shadow , 1966 .

[11]  John E. Tyler,et al.  The nature of light and colour in the open air , 1954 .

[12]  Peter Shirley,et al.  A practical analytic model for daylight , 1999, SIGGRAPH.

[13]  A. T. Young Air mass and refraction. , 1994, Applied optics.

[14]  Johannes Kepler,et al.  Astronomiae pars optica , 1939 .

[15]  F. Link Eclipse Phenomena in Astronomy , 1969 .

[16]  Francisco J. Serón,et al.  Chasing the green flash: a global illumination solution for inhomogeneous media , 2004, SCCG '04.

[17]  A. Bucholtz,et al.  Rayleigh-scattering calculations for the terrestrial atmosphere. , 1995, Applied optics.

[18]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[19]  Marcus A. Magnor,et al.  Realistic Solar Disc Rendering , 2005, WSCG.

[20]  Nancy Levit,et al.  Ray tracing mirages , 1990, IEEE Computer Graphics and Applications.

[21]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[22]  R. Keen Volcanic Aerosols and Lunar Eclipses , 1983, Science.

[23]  R. Stothers Stratospheric Transparency Derived from Total Lunar Eclipse Colors, 1665–1800 , 2004 .

[24]  Hans-Peter Seidel,et al.  Physically-based simulation of twilight phenomena , 2005, TOGS.

[25]  Jos Stam,et al.  Ray Tracing in Non-Constant Media , 1996, Rendering Techniques.

[26]  Jean Meeus,et al.  Astronomical formulae for calculators , 1982 .

[27]  Frédo Durand,et al.  A physically-based night sky model , 2001, SIGGRAPH.

[28]  Francisco J. Serón,et al.  Visualizing sunsets through inhomogeneous atmospheres , 2004, Proceedings Computer Graphics International, 2004..

[29]  Carle M. Pieters,et al.  The Moon as a Spectral Calibration Standard Enabled by Lunar Samples: The Clementine Example , 1999 .

[30]  R. Stothers Stratospheric Transparency Derived from Total Lunar Eclipse Colors, 1801–1881 , 2005 .

[31]  Andrew S. Glassner Principles of digital image synthesis. Volume 1 , 1995 .

[32]  S. Gedzelman,et al.  Simulating irradiance during lunar eclipses: the spherically symmetric case. , 2008, Applied optics.

[33]  D. Lide Handbook of Chemistry and Physics , 1992 .

[34]  J. Hansen,et al.  Atmospheric extinction by dust particles as determined from three-color photometry of the lunar eclipse of 19 December 1964 , 1966 .