Impacts of black carbon mixing state on black carbon nucleation scavenging: Insights from a particle‐resolved model

[1] This paper presents an advancement of the recently developed particle-resolved aerosol model PartMC-MOSAIC (Particle Monte Carlo-Model for Simulating Aerosol Interactions and Chemistry) to investigate the impacts of mixing state on cloud droplet formation and to provide a tool for the quantification of errors in cloud properties introduced by simplifying mixing state assumptions. We coupled PartMC-MOSAIC with a cloud parcel model. We initialized the cloud parcel simulation with hourly PartMC-MOSAIC model output from a 48-hour urban plume simulation. The cloud parcel model then explicitly simulated activation and condensational growth of the particles as the parcel underwent cooling at a specified rate and the particles of the aerosol population competed for water vapor. We used this capability to quantify the relative importance of size information versus composition information for the prediction of the cloud droplet number fraction, mass fraction of black carbon that is nucleation-scavenged, cloud droplet effective radius, and relative dispersion of the droplet size distribution by introducing averaging of particle-resolved information within prescribed bins. For the cloud droplet number fraction, both composition averaging and size-bin averaging individually led to an error of less than 25% for all cloud parcel simulations, while averaging in both size bins and composition resulted in errors of up to 34% for the base case cooling rate of 0.5 K/min. In contrast, for the nucleation-scavenged black carbon mass fraction, the results for size-bin averaging tracked the reference case well, while composition averaging, with or without size-bin averaging, led to overestimation of this quantity by up to 600%.

[1]  J. Seinfeld,et al.  Importance of composition and hygroscopicity of BC particles to the effect of BC mitigation on cloud properties: Application to California conditions , 2012 .

[2]  P. Forster,et al.  Global cloud condensation nuclei influenced by carbonaceous combustion aerosol , 2011 .

[3]  Matthew West,et al.  Weighted Flow Algorithms (WFA) for stochastic particle coagulation , 2011, J. Comput. Phys..

[4]  T. Anttila Sensitivity of cloud droplet formation to the numerical treatment of the particle mixing state , 2010 .

[5]  Matthew West,et al.  Particle‐resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume , 2010 .

[6]  D. Koch,et al.  Black carbon semi-direct effects on cloud cover: review and synthesis , 2010 .

[7]  P. Buseck,et al.  Shapes of soot aerosol particles and implications for their effects on climate , 2010 .

[8]  Jian Wang,et al.  The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols , 2010 .

[9]  W. Landman Climate change 2007: the physical science basis , 2010 .

[10]  J. Seinfeld,et al.  Will black carbon mitigation dampen aerosol indirect forcing? , 2010 .

[11]  Jian Wang,et al.  CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations , 2009 .

[12]  K. Prather,et al.  In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates , 2009, Proceedings of the National Academy of Sciences.

[13]  Q. Min,et al.  An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing , 2009 .

[14]  R. C. Easter,et al.  Estimating Black Carbon Aging Time-Scales with a Particle-Resolved Aerosol Model , 2009, 0903.0029.

[15]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 2: Including solubility , 2008 .

[16]  R. Ruedy,et al.  MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models , 2008 .

[17]  Y. Kondo,et al.  Dependence of size-resolved CCN spectra on the mixing state of nonvolatile cores observed in Tokyo , 2008 .

[18]  Kimberly A. Prather,et al.  The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties , 2008 .

[19]  R. C. Easter,et al.  Simulating the evolution of soot mixing state with a particle-resolved aerosol model , 2008, 0809.0875.

[20]  Jerome D. Fast,et al.  Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) , 2008 .

[21]  J. Peischl,et al.  Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions , 2008 .

[22]  Sonia M. Kreidenweis,et al.  Cloud droplet activation of secondary organic aerosol , 2007 .

[23]  A. Nenes,et al.  Cloud condensation nuclei closure during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign: Effects of size-resolved composition , 2007 .

[24]  M. Petters,et al.  Chemical aging and the hydrophobic‐to‐hydrophilic conversion of carbonaceous aerosol , 2006 .

[25]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[26]  A. Khain,et al.  Dependence of droplet concentration on aerosol conditions in different cloud types: Application to droplet concentration parameterization of aerosol conditions , 2006 .

[27]  M. Andreae,et al.  Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles , 2006, Science.

[28]  K. Prather,et al.  Single particle characterization of ultrafine and accumulation mode particles from heavy duty diesel vehicles using aerosol time-of-flight mass spectrometry. , 2006, Environmental science & technology.

[29]  V. Ramaswamy,et al.  A New Parameterization of Cloud Droplet Activation Applicable to General Circulation Models , 2006 .

[30]  Leonard K. Peters,et al.  A computationally efficient Multicomponent Equilibrium Solver for Aerosols (MESA) , 2005 .

[31]  Sonia M. Kreidenweis,et al.  Influence of water‐soluble organic carbon on cloud drop number concentration , 2005 .

[32]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[33]  U. Lohmann,et al.  Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model , 2005 .

[34]  Athanasios Nenes,et al.  Continued development of a cloud droplet formation parameterization for global climate models , 2005 .

[35]  A. Mangold,et al.  Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles , 2005 .

[36]  Melanie A. Wetzel,et al.  Evaluation of the aerosol indirect effect in marine stratocumulus clouds : droplet number, size, liquid water path, and radiative impact , 2005 .

[37]  Anthony S. Wexler,et al.  A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric aerosols , 2005 .

[38]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[39]  B. Vogel,et al.  Soot aging time scales in polluted regions during day and night , 2004 .

[40]  J. Seinfeld,et al.  Aerosol–cloud drop concentration closure in warm cumulus , 2004 .

[41]  Leon D. Rotstayn,et al.  Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration , 2003 .

[42]  B. Vogel,et al.  Modeling aerosols on the mesoscale‐γ: Treatment of soot aerosol and its radiative effects , 2003 .

[43]  G. Feingold Modeling of the first indirect effect: Analysis of measurement requirements , 2003 .

[44]  J. Seinfeld,et al.  Parameterization of cloud droplet formation in global climate models , 2003 .

[45]  J. Seinfeld,et al.  Modification of aerosol mass and size distribution due to aqueous‐phase SO2 oxidation in clouds: Comparisons of several models , 2003 .

[46]  Dana E. Veron,et al.  First measurements of the Twomey indirect effect using ground‐based remote sensors , 2003 .

[47]  J. Seinfeld,et al.  Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect 2. Cloud microphysics , 2002 .

[48]  J. Seinfeld,et al.  Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect 1. Extended Köhler theory , 2002 .

[49]  P. Daum,et al.  Anthropogenic aerosols: Indirect warming effect from dispersion forcing , 2002, Nature.

[50]  Jón Egill Kristjánsson,et al.  Studies of the aerosol indirect effect from sulfate and black carbon aerosols , 2002 .

[51]  U. Lohmann,et al.  The cloud albedo-cloud droplet effective radius relationship for clean and polluted clouds from RACE and FIRE.ACE , 2002 .

[52]  I. J. Ackermann,et al.  Modeling the formation of secondary organic aerosol within a comprehensive air quality model system , 2001 .

[53]  G. McFarquhar,et al.  Parameterizations of INDOEX microphysical measurements and calculations of cloud susceptibility: Applications for climate studies , 2001 .

[54]  James G. Hudson,et al.  Evaluation of aerosol direct radiative forcing in MIRAGE , 2001 .

[55]  A. Wexler,et al.  Microphysics of aqueous droplets in clouds and fogs as applied to PM-fine modeling , 2001 .

[56]  M. Jacobson,et al.  Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols , 2022 .

[57]  S. Ghan,et al.  Kinetic limitations on cloud droplet formation and impact on cloud albedo , 2001 .

[58]  P. Daum,et al.  Spectral dispersion of cloud droplet size distributions and the parameterization of cloud droplet effective radius , 2000 .

[59]  Michael J. Kleeman,et al.  SIZE AND COMPOSITION DISTRIBUTION OF FINE PARTICULATE MATTER EMITTED FROM MOTOR VEHICLES , 2000 .

[60]  S. Ghan,et al.  A parameterization of aerosol activation: 2. Multiple aerosol types , 2000 .

[61]  L. Schüller,et al.  Radiative Properties of Boundary Layer Clouds: Droplet Effective Radius versus Number Concentration , 2000 .

[62]  Leonard K. Peters,et al.  A new lumped structure photochemical mechanism for large‐scale applications , 1999 .

[63]  S. Kreidenweis,et al.  Ice formation by black carbon particles , 1999 .

[64]  S. Larson,et al.  Contribution of carbonaceous material to cloud condensation nuclei concentrations in European background (Mt. Sonnblick) and urban (Vienna) aerosols , 1999 .

[65]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1998 .

[66]  Steven J. Ghan,et al.  A parameterization of aerosol activation: 1. Single aerosol type , 1998 .

[67]  J. H. Seinfeld,et al.  Kinetic limitations on droplet formation in clouds , 1997, Nature.

[68]  H. Burtscher,et al.  Hygroscopic properties of carbon and diesel soot particles , 1997 .

[69]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[70]  A. Hindmarsh,et al.  CVODE, a stiff/nonstiff ODE solver in C , 1996 .

[71]  S. Ghan,et al.  A parameterization of cloud droplet nucleation. Part II: Multiple aerosol types , 1995 .

[72]  S. Ghan,et al.  A parameterization of cloud droplet nucleation part I: single aerosol type , 1993 .

[73]  H. Pruppacher,et al.  A Numerical Determination of the Evolution of Cloud Drop Spectra due to Condensation on Natural Aerosol Particles , 1980 .

[74]  W. Weaver,et al.  Two-Stream Approximations to Radiative Transfer in Planetary Atmospheres: A Unified Description of Existing Methods and a New Improvement , 1980 .

[75]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[76]  S. Twomey Pollution and the Planetary Albedo , 1974 .

[77]  W. Mordy Computations of the Growth by Condensation of a Population of Cloud Droplets , 1959 .

[78]  Wallace E. Howell,et al.  THE GROWTH OF CLOUD DROPS IN UNIFORMLY COOLED AIR , 1949 .

[79]  D. Koch,et al.  Black carbon semidirect effects on cloud cover : review and synthesis , 2010 .

[80]  J. Seinfeld,et al.  Black carbon radiative heating effects on cloud microphysics and implications for aerosol indirect forcing : 1 . Extended Köhler theory , 2002 .

[81]  M. Jacobson Development and application of a new air pollution modeling system—II. Aerosol module structure and design , 1997 .

[82]  D. Rivin,et al.  Particulate carbon and other components of soot and carbon black , 1982 .

[83]  H. Köhler The nucleus in and the growth of hygroscopic droplets , 1936 .