The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2

We present analysis of the near-infrared spectra of 114 rest-frame UV-selected star-forming galaxies at z ~ 2. By combining the Hα spectra with photometric measurements from observed 0.3-8 μm, we assess the relationships among kinematics, dynamical masses, inferred gas fractions, and stellar masses and ages. The Hα line widths give a mean dynamical mass Mdyn = (6.9 ± 0.6) × 1010 M☉ within a typical radius of ~6 kpc, after excluding AGNs. The average dynamical mass is ~2 times larger than the average stellar mass, and the two agree to within a factor of several for most objects. However, ~15% of the sample has Mdyn ≫ M⋆. These objects are best fit by young stellar populations and tend to have high Hα equivalent widths, WHα ≳ 200 Å, suggesting that they are young starbursts with large gas masses. Rest-frame optical luminosity and velocity dispersion are correlated with 4 σ significance. Using the local empirical correlation between star formation rate per unit area and gas surface density, we estimate the mass of the gas associated with star formation and find a mean gas fraction of ~50% and a strong decrease in gas fraction with increasing stellar mass. The masses of gas and stars combined are considerably better correlated with the dynamical masses than are the stellar masses alone, and agree to within a factor of 3 for 85% of the sample. The combination of kinematic measurements, estimates of gas masses, and stellar population properties suggest that the factor of ~500 range in stellar mass across the sample cannot be fully explained by intrinsic differences in the total masses of the galaxies, which vary by a factor of ~40; the remaining variation is due to the evolution of the stellar population and the conversion of gas into stars.

[1]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[2]  David R. Law,et al.  Predictions and Strategies for Integral-Field Spectroscopy of High-Redshift Galaxies , 2005, astro-ph/0509779.

[3]  C. Steidel,et al.  A Census of Optical and Near-Infrared Selected Star-forming and Passively Evolving Galaxies at Redshift z ~ 2 , 2005, astro-ph/0507264.

[4]  P. Hopkins,et al.  The Evolution of the MBH-σ Relation , 2005, astro-ph/0506038.

[5]  C. Steidel,et al.  The Connection between Galaxies and Intergalactic Absorption Lines at Redshift 2 ≲ z ≲ 3 , 2005, astro-ph/0505122.

[6]  M. Begelman,et al.  Self-regulated black hole accretion, the M−σ relation and the growth of bulges in galaxies , 2005, astro-ph/0504400.

[7]  U. Padova,et al.  On the Relation between Circular Velocity and Central Velocity Dispersion in High and Low Surface Brightness Galaxies , 2005, astro-ph/0503649.

[8]  Jia-Sheng Huang,et al.  Ultraviolet to Mid-Infrared Observations of Star-forming Galaxies at z ~ 2: Stellar Masses and Stellar Populations , 2005, astro-ph/0503485.

[9]  L. Colina,et al.  Kinematics of Low-z Ultraluminous Infrared Galaxies and Implications for Dynamical Mass Derivations in High-z Star-forming Galaxies , 2005 .

[10]  Edinburgh,et al.  An interferometric CO survey of luminous submillimetre galaxies , 2005, astro-ph/0503055.

[11]  C. Steidel,et al.  Spectroscopic Identification of a Protocluster at z = 2.300: Environmental Dependence of Galaxy Properties at High Redshift , 2005, astro-ph/0502432.

[12]  H. Rix,et al.  Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.

[13]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[14]  I. Hook,et al.  Cosmic Star Formation History and Its Dependence on Galaxy Stellar Mass , 2004, astro-ph/0411775.

[15]  V. Springel,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 9/08/03 BLACK HOLES IN GALAXY MERGERS: THE FORMATION OF RED ELLIPTICAL GALAXIES , 2004 .

[16]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[17]  Mark Swinbank,et al.  The Rest-Frame Optical Spectra of SCUBA Galaxies , 2004, astro-ph/0412050.

[18]  M. Pettini,et al.  The Spatial Clustering of Star-forming Galaxies at Redshifts 1.4 ≲ z ≲ 3.5 , 2004, astro-ph/0410165.

[19]  A. Cimatti,et al.  A New Photometric Technique for the Joint Selection of Star-forming and Passive Galaxies at 1.4 ≲ z ≲ 2.5 , 2004, astro-ph/0409041.

[20]  P. P. van der Werf,et al.  A Substantial Population of Red Galaxies at z > 2: Modeling of the Spectral Energy Distributions of an Extended Sample , 2004, astro-ph/0408077.

[21]  S. M. Fall,et al.  High-Redshift Extremely Red Objects in the Hubble Space Telescope Ultra Deep Field Revealed by the GOODS Infrared Array Camera Observations , 2004, astro-ph/0408070.

[22]  G. Fazio,et al.  Deep Mid-Infrared Observations of Lyman Break Galaxies , 2004, astro-ph/0405624.

[23]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[24]  C. Steidel,et al.  Evidence for Solar Metallicities in Massive Star-forming Galaxies at z ≳ 2 , 2004, astro-ph/0405187.

[25]  P. P. van der Werf,et al.  Stellar Populations and Kinematics of Red Galaxies at z > 2: Implications for the Formation of Massive Galaxies , 2004, astro-ph/0404471.

[26]  C. Steidel,et al.  The Kinematics of Morphologically Selected z ~ 2 Galaxies in the GOODS-North Field , 2004, astro-ph/0404235.

[27]  J. Dunlop,et al.  The star-formation history of the Universe from the stellar populations of nearby galaxies , 2004, Nature.

[28]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[29]  S. M. Fall,et al.  The Size Evolution of High-Redshift Galaxies , 2003, astro-ph/0309058.

[30]  Stellar and dynamical masses of ellipticals in the Sloan Digital Sky Survey , 2003, astro-ph/0307082.

[31]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[32]  P. P. van der Werf,et al.  The Rest-Frame Optical Luminosity Density, Color, and Stellar Mass Density of the Universe from z = 0 to z = 3 , 2003, astro-ph/0307149.

[33]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[34]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[35]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[36]  J. Cuby,et al.  Hα Spectroscopy of Galaxies at z > 2: Kinematics and Star Formation , 2003, astro-ph/0303392.

[37]  Stephen S. Eikenberry,et al.  A Wide-Field Infrared Camera for the Palomar 200-inch Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[38]  P. P. van der Werf,et al.  A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies , 2003, astro-ph/0303163.

[39]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[40]  R. Nichol,et al.  Early-type Galaxies in the Sloan Digital Sky Survey. II. Correlations between Observables , 2003, astro-ph/0301624.

[41]  V. Springel,et al.  Black Hole Growth and Activity in a Λ Cold Dark Matter Universe , 2003, astro-ph/0301586.

[42]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[43]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[44]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[45]  R. Genzel,et al.  Molecular Gas in the Lensed Lyman Break Galaxy cB58 , 2002, astro-ph/0312099.

[46]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[47]  A. Cimatti,et al.  The K20 survey - I. Disentangling old and dusty star-forming galaxies in the ERO population , 2001, astro-ph/0111527.

[48]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[49]  J. Cuby,et al.  The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics , 2001, astro-ph/0102456.

[50]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[51]  H. Ferguson,et al.  The Stellar Populations and Evolution of Lyman Break Galaxies , 2000, astro-ph/0105087.

[52]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[53]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[54]  J. Brinchmann,et al.  The Mass Assembly and Star Formation Characteristics of Field Galaxies of Known Morphology , 2000, The Astrophysical journal.

[55]  E. Bell,et al.  The stellar populations of spiral galaxies , 1999, astro-ph/9909402.

[56]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[57]  K. Gebhardt,et al.  Obtaining Galaxy Masses Using Stellar Absorption and [O II] Emission-Line Diagnostics in Late-Type Galaxies , 1999, astro-ph/9911361.

[58]  R. Nichol,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/0103228.

[59]  James E. Larkin,et al.  Design and development of NIRSPEC: a near-infrared echelle spectrograph for the Keck II telescope , 1998, Astronomical Telescopes and Instrumentation.

[60]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[61]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[62]  H. Yee,et al.  Optical-Infrared Spectral Energy Distributions of z > 2 Lyman Break Galaxies , 1997, astro-ph/9712216.

[63]  Optical Rotation Curves and Linewidths for Tully-Fisher Applications , 1997, astro-ph/9709201.

[64]  S. McGaugh,et al.  GAS MASS FRACTIONS AND THE EVOLUTION OF SPIRAL GALAXIES , 1996, astro-ph/9612070.

[65]  H. Rix,et al.  Internal kinematics of distant field galaxies - I. Emission linewidths for a complete sample of faint blue galaxies at ~0.25 , 1996, astro-ph/9605204.

[66]  T. Heckman,et al.  The Nature of Starburst Galaxies , 1996 .

[67]  B. T. Soifer,et al.  The Near Infrared Camera on the W. M. Keck Telescope , 1994 .

[68]  K. Matthews,et al.  in Infrared Astronomy with Arrays: The Next Generation , 1994 .

[69]  S. Faber,et al.  Velocity dispersions and mass-to-light ratios for elliptical galaxies. , 1976 .

[70]  M. Schmidt The Rate of Star Formation , 1959 .

[71]  E. Salpeter The Luminosity function and stellar evolution , 1955 .