Parallel and Blocked Algorithms for Reduction of a Regular Matrix Pair to Hessenberg-Triangular and Generalized Schur Forms
暂无分享,去创建一个
[1] Isak Jonsson,et al. Recursive blocked algorithms for solving triangular systems—Part II: two-sided and generalized Sylvester and Lyapunov matrix equations , 2002, TOMS.
[2] Bruno Lang,et al. Using Level 3 BLAS in Rotation-Based Algorithms , 1998, SIAM J. Sci. Comput..
[3] Bo Kågström,et al. LAPACK-style algorithms and software for solving the generalized Sylvester equation and estimating the separation between regular matrix pairs , 1994, TOMS.
[4] Krister Dackland,et al. A ScaLAPACK-Style Algorithm for Reducing a Regular Matrix Pair to Block Hessenberg-Triangular Form , 1998, PARA.
[5] Isak Jonsson,et al. Recursive blocked algorithms for solving triangular systems—Part I: one-sided and coupled Sylvester-type matrix equations , 2002, TOMS.
[6] Karen S. Braman,et al. The Multishift QR Algorithm. Part II: Aggressive Early Deflation , 2001, SIAM J. Matrix Anal. Appl..
[7] James Demmel,et al. On a Block Implementation of Hessenberg Multishift QR Iteration , 1989, Int. J. High Speed Comput..
[8] Krister Dackland,et al. Blocked algorithms and software for reduction of a regular matrix pair to generalized Schur form , 1999, TOMS.
[9] Gene H. Golub,et al. Linear algebra for large scale and real-time applications , 1993 .
[10] Karen S. Braman,et al. The Multishift QR Algorithm. Part I: Maintaining Well-Focused Shifts and Level 3 Performance , 2001, SIAM J. Matrix Anal. Appl..
[11] Bo Kågström,et al. Distributed and Shared Memory Block Algorithms for the Triangular Sylvester Equation with øperatornamesep - 1 Estimators , 1992, SIAM J. Matrix Anal. Appl..
[12] Robert A. van de Geijn,et al. Deferred Shifting Schemes for Parallel QR Methods , 1993, SIAM J. Matrix Anal. Appl..
[13] Jack J. Dongarra,et al. A Parallel Implementation of the Nonsymmetric QR Algorithm for Distributed Memory Architectures , 2002, SIAM J. Sci. Comput..
[14] Krister Dackland,et al. A Hierarchical Approach for Performance Analysis of ScaLAPACK-Based Routines Using the Distributed Linear Algebra Machine , 1996, PARA.
[15] David S. Watkins,et al. Shifting Strategies for the Parallel QR Algorithm , 1994, SIAM J. Sci. Comput..
[16] Peter Poromaa. Parallel Algorithms for Triangular Sylvester Equations: Design, Scheduling and Saclability Issues , 1998, PARA.
[17] Erik Elmroth,et al. A Web Computing Environment for the SLICOT Library , 2001 .
[18] G. Stewart,et al. An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .
[19] Jack Dongarra,et al. ScaLAPACK Users' Guide , 1987 .
[20] Bo Kågström,et al. A Perturbation Analysis of the Generalized Sylvester Equation $( AR - LB,DR - LE ) = ( C,F )$ , 1994, SIAM J. Matrix Anal. Appl..
[21] Robert A. van de Geijn,et al. Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem: Myths and Reality , 1996, SIAM J. Sci. Comput..
[22] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[23] Krister Dackland,et al. Parallel Two-Stage Reduction of a Regular Matrix Pair to Hessenberg-Triangular Form , 2000, PARA.
[24] David S. Watkins. Bulge Exchanges in Algorithms of QR Type , 1998 .
[25] David S. Watkins,et al. Theory of Decomposition and Bulge-Chasing Algorithms for the Generalized Eigenvalue Problem , 1994 .
[26] B. Kågström,et al. A Direct Method for Reordering Eigenvalues in the Generalized Real Schur form of a Regular Matrix Pair (A, B) , 1993 .