Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems

[1]  W. Walter Differential and Integral Inequalities , 1970 .

[2]  S. Gordon On Converses to the Stability Theorems for Difference Equations , 1972 .

[3]  H. Stetter Analysis of Discretization Methods for Ordinary Differential Equations , 1973 .

[4]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  A. Michel,et al.  Stability analysis of hybrid composite dynamical systems: Descriptions involving operators and differential equations , 1985, 1985 24th IEEE Conference on Decision and Control.

[6]  R. K. Miller,et al.  Stability Analysis of Hybrid Composite Dynamical Systems: Descriptions Involving Operators and Difference Equations , 1986, 1986 American Control Conference.

[7]  Eduardo D. Sontag,et al.  An eigenvalue condition for sampled weak controllability of bilinear systems , 1986 .

[8]  B. Francis,et al.  Stability Theory for Linear Time-Invariant Plants with Periodic Digital Controllers , 1988, 1988 American Control Conference.

[9]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[10]  Eduardo Sontag,et al.  Controllability of Nonlinear Discrete-Time Systems: A Lie-Algebraic Approach , 1990, SIAM Journal on Control and Optimization.

[11]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[12]  B. Francis,et al.  Input-output stability of sampled-data systems , 1991 .

[13]  Robin J. Evans,et al.  Controlling nonlinear time-varying systems via euler approximations , 1992, Autom..

[14]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[15]  A. Michel,et al.  Some qualitative properties of sampled-data control systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[16]  S. Monaco,et al.  On regulation under sampling , 1997, IEEE Trans. Autom. Control..

[17]  A. Bountis Dynamical Systems And Numerical Analysis , 1997, IEEE Computational Science and Engineering.

[18]  Robin J. Evans,et al.  Trajectory-approximation-based adaptive control for nonlinear systems under matching conditions , 1998, Autom..

[19]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[20]  Andrew R. Teel,et al.  Global asymptotic stability for the averaged implies semi-global practical asymptotic stability for the actual , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[21]  D. Aeyels,et al.  A new asymptotic stability criterion for nonlinear time-variant differential equations , 1998, IEEE Trans. Autom. Control..

[22]  Dirk Aeyels,et al.  On exponential stability of nonlinear time-varying differential equations , 1999, Autom..

[23]  Dirk Aeyels,et al.  Averaging Results and the Study of Uniform Asymptotic Stability of Homogeneous Differential Equations That Are Not Fast Time-Varying , 1999 .

[24]  C. SIAMJ.,et al.  AVERAGING RESULTS AND THE STUDY OF UNIFORM ASYMPTOTIC STABILITY OF HOMOGENEOUS DIFFERENTIAL EQUATIONS THAT ARE NOT FAST TIME-VARYING∗ , 1999 .

[25]  Dragan Nesic,et al.  On the design of a controller based on the discrete-time approximation of the nonlinear plant model , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[26]  V. Lakshmikantham,et al.  Differential and Integral Inequalities , 2019, Springer Optimization and Its Applications.