Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic

[1]  Jacob L. Jones,et al.  Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 using in situ high-energy X-ray diffraction during application of electric fields , 2014 .

[2]  Jacob L. Jones,et al.  Domain Wall Displacement is the Origin of Superior Permittivity and Piezoelectricity in BaTiO3 at Intermediate Grain Sizes , 2014 .

[3]  Deere Avenue,et al.  Newport Corporation Statement Regarding Compliance with Directive 2011/65/EU on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (Recast) (the "RoHS Directive") , 2014 .

[4]  W. Jo,et al.  Polarization dynamics across the morphotropic phase boundary in Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ferroelectrics , 2013 .

[5]  Jiagang Wu,et al.  Orthorhombic–tetragonal phase coexistence and piezoelectric behavior in (1−x)(Ba,Ca)(Ti,Sn)O3–x(Ba,Ca)(Ti,Zr)O3 lead-free ceramics , 2013 .

[6]  I. Bhaumik,et al.  Growth of lead-free piezoelectric 0.45BZT–0.55BCT single crystal and investigation of dielectric, polarization and birefringence properties , 2013 .

[7]  J. Kreisel,et al.  Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3) , 2013 .

[8]  P. Gupta,et al.  Electro-caloric effect in 0.45BaZr0.2Ti0.8O3-0.55Ba0.7Ca0.3TiO3 single crystal , 2013 .

[9]  Astri Bjørnetun Haugen,et al.  Structure and phase transitions in 0.5(Ba0.7Ca0.3TiO3)-0.5(BaZr0.2Ti0.8O3) from −100°C to 150°C , 2013 .

[10]  K. Bowman,et al.  Phase coexistence and ferroelastic texture in high strain (1−x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoceramics , 2012 .

[11]  J. Zhai,et al.  Correlation Between the Microstructure and Electrical Properties in High‐Performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Lead‐Free Piezoelectric Ceramics , 2012 .

[12]  Jiadong Zang,et al.  Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective , 2012, Journal of Electroceramics.

[13]  Michael J. Hoffmann,et al.  Universal Polarization Switching Behavior of Disordered Ferroelectrics , 2012 .

[14]  Jianguo Zhu,et al.  Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1−xZrx)O3 lead-free piezoelectric ceramics , 2012 .

[15]  Dragan Damjanovic,et al.  Elastic, dielectric, and piezoelectric anomalies and Raman spectroscopy of 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 , 2012, 1203.5526.

[16]  Wook Jo,et al.  Temperature Dependence of the Piezoelectric Coefficient in BiMeO3-PbTiO3 (Me = Fe, Sc, (Mg1/2Ti1/2)) Ceramics , 2012 .

[17]  Wei Li,et al.  Large Piezoelectric Coefficient in (Ba1−xCax)(Ti0.96Sn0.04)O3 Lead‐Free Ceramics , 2011 .

[18]  W. Jo,et al.  Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics , 2011 .

[19]  Haijun Wu,et al.  Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics , 2011 .

[20]  H. Khemakhem,et al.  Linking large piezoelectric coefficients to highly flexible polarization of lead free BaTiO3-CaTiO3-BaZrO3 ceramics , 2011 .

[21]  T. Lookman,et al.  Effects of tricritical points and morphotropic phase boundaries on the piezoelectric properties of ferroelectrics , 2011 .

[22]  Zhengkui Xu,et al.  Poling dependence and stability of piezoelectric properties of Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics with huge piezoelectric coefficients , 2011 .

[23]  D. Xue,et al.  Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3- 50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary , 2011 .

[24]  Dragan Damjanovic A morphotropic phase boundary system based on polarization rotation and polarization extension , 2010, 1007.4394.

[25]  W. Jo,et al.  Effect of tetragonal distortion on ferroelectric domain switching: A case study on La-doped BiFeO3–PbTiO3 ceramics , 2010 .

[26]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[27]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[28]  G. Rossetti,et al.  Inherent nanoscale structural instabilities near morphotropic boundaries in ferroelectric solid solutions , 2007 .

[29]  J. Petzelt,et al.  The giant electromechanical response in ferroelectric relaxors as a critical phenomenon , 2006, Nature.

[30]  Isaak D. Mayergoyz,et al.  The science of hysteresis , 2005 .

[31]  G. Shirane,et al.  Universal phase diagram for high-piezoelectric perovskite systems , 2001, cond-mat/0102457.

[32]  D. Hall Rayleigh behaviour and the threshold field in ferroelectric ceramics , 1999 .

[33]  Leslie E. Cross,et al.  Direct evaluation of domain‐wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate‐titanate ceramics , 1994 .

[34]  E. Furman,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part I: Phenomenology , 1989 .

[35]  L. E. Cross,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part V: Theoretical calculations , 1989 .

[36]  E. Furman,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part II: Tricritical behavior , 1989 .

[37]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[38]  Mel I. Mendelson,et al.  Average Grain Size in Polycrystalline Ceramics , 1969 .

[39]  Malcolm McQUARRIE,et al.  Role of Domain Processes in Polycrystalline Barium Titanate , 1956 .