Accurate coverage-dependence incorporated into first-principles kinetic models: Catalytic NO oxidation on Pt (1 1 1)

The coverage of surface adsorbates influences both the number and types of sites available for catalytic reactions at a heterogeneous surface, but accounting for adsorbate–adsorbate interactions and understanding their implications on observed rates remain challenges for simulation. Here, we demonstrate the use of a density functional theory (DFT)-parameterized cluster expansion (CE) to incorporate accurate adsorbate–adsorbate interactions into a surface kinetic model. The distributions of adsorbates and reaction sites at a metal surface as a function of reaction conditions are obtained through Grand Canonical Monte Carlo simulations on the CE Hamiltonian. Reaction rates at those sites are obtained from the CE through a DFT-parameterized Bronsted–Evans–Polyani (BEP) relationship. The approach provides ready access both to steady-state rates and rate derivatives and further provides insight into the microscopic factors that influence observed rate behavior. We demonstrate the approach for steady-state O2 dissociation at an O-covered Pt (1 1 1) surface—a model for catalytic NO oxidation at this surface—and recover apparent activation energies and rate orders consistent with experiment.

[1]  G. Henkelman,et al.  A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives , 1999 .

[2]  V. Zhdanov,et al.  Arrhenius parameters for rate processes on solid surfaces , 1991 .

[3]  B. Koel,et al.  Study of high coverages of atomic oxygen on the Pt(111) surface , 1989 .

[4]  Jpl John Segers,et al.  Efficient Monte Carlo methods for the simulation of catalytic surface reactions , 1998 .

[5]  Perspectives on the first principles elucidation and the design of active sites , 2003 .

[6]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[7]  G. Ertl,et al.  A molecular beam study of the adsorption and desorption of oxygen from a Pt(111) surface , 1981 .

[8]  A. Asthagiri,et al.  Density functional theory study of the initial oxidation of the Pt(111) surface , 2009 .

[9]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[10]  P. Légaré Interaction of oxygen with the Pt(1 1 1) surface in wide conditions range. A DFT-based thermodynamical simulation , 2005 .

[11]  E. Fridell,et al.  A Kinetic Study of NO Oxidation and NOx Storage on Pt/Al2O3 and Pt/BaO/Al2O3 , 2001 .

[12]  Da‐Jiang Liu,et al.  Interactions between oxygen atoms on Pt(100): implications for ordering during chemisorption and catalysis. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  Rachel B. Getman,et al.  Oxygen-coverage effects on molecular dissociations at a Pt metal surface. , 2009, Physical review letters.

[14]  D. Murzin On Surface Heterogeneity and Catalytic Kinetics , 2005 .

[15]  A. van de Walle,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002 .

[16]  H Germany,et al.  First-principles statistical mechanics approach to step decoration at surfaces , 2008, 0810.2504.

[17]  Matthew Neurock,et al.  Predicting lateral surface interactions through density functional theory: application to oxygen on Rh(100) , 1999 .

[18]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[19]  F. Ribeiro,et al.  Coupled theoretical and experimental analysis of surface coverage effects in Pt-catalyzed NO and O2 reaction to NO2 on Pt(1 1 1) , 2008 .

[20]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[21]  Manos Mavrikakis,et al.  Molecular-level descriptions of surface chemistry in kinetic models using density functional theory , 2004 .

[22]  J. Nørskov,et al.  Universal Brønsted-Evans-Polanyi Relations for C–C, C–O, C–N, N–O, N–N, and O–O Dissociation Reactions , 2011 .

[23]  L. Näslund,et al.  Low O2 dissociation barrier on Pt(111) due to adsorbate-adsorbate interactions. , 2010, The Journal of chemical physics.

[24]  S. Müller,et al.  Adsorbate cluster expansion for an arbitrary number of inequivalent sites , 2008 .

[25]  Da‐Jiang Liu,et al.  Atomistic lattice-gas modeling of CO oxidation on Pd(100): temperature-programmed spectroscopy and steady-state behavior. , 2006, The Journal of chemical physics.

[26]  F. Ribeiro,et al.  Oxidation of NO with O2 on Pt(111) and Pt(321) large single crystals. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[27]  J. Niemantsverdriet,et al.  Concepts of modern catalysis and kinetics , 2005 .

[28]  Rachel B. Getman,et al.  DFT‐Based Coverage‐Dependent Model of Pt‐Catalyzed NO Oxidation , 2010 .

[29]  Qingfeng Ge,et al.  First-principles-based kinetic Monte Carlo simulation of nitric oxide decomposition over Pt and Rh surfaces under lean-burn conditions , 2004 .

[30]  Phase diagram and adsorption-desorption kinetics of CO on Ru(0001) from first principles. , 2007, The Journal of chemical physics.

[31]  W. Epling,et al.  Reaction of NO and O2 to NO2 on Pt : Kinetics and catalyst deactivation , 2006 .

[32]  Rachel B. Getman,et al.  Thermodynamics of Environment-Dependent Oxygen Chemisorption on Pt(111) , 2008 .

[33]  R. Forcade,et al.  UNCLE: a code for constructing cluster expansions for arbitrary lattices with minimal user-input , 2009 .

[34]  V. Balakotaiah,et al.  Experimental and kinetic study of NO oxidation on model Pt catalysts , 2009 .

[35]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[36]  Gus L. W. Hart,et al.  Using genetic algorithms to map first-principles results to model Hamiltonians: Application to the generalized Ising model for alloys , 2005 .

[37]  M. Scheffler,et al.  First-Principles Theory of Surface Thermodynamics and Kinetics , 1999, cond-mat/9908213.

[38]  H. Kreuzer,et al.  Adsorption and desorption of CO on Ru(0 0 0 1): A comprehensive analysis , 2005 .

[39]  G. Fisher,et al.  Oxygen interactions with the Pt(111) surface , 1980 .

[40]  Michail Stamatakis,et al.  A graph-theoretical kinetic Monte Carlo framework for on-lattice chemical kinetics. , 2011, The Journal of chemical physics.

[41]  Predicting order-disorder phase transitions of O/Pd(111) from ab initio Wang-Landau Monte Carlo calculations , 2010 .

[42]  Gerbrand Ceder,et al.  Surface segregation and ordering of alloy surfaces in the presence of adsorbates , 2005 .

[43]  E. Iglesia,et al.  NO Oxidation Catalysis on Pt Clusters: Elementary Steps, Structural Requirements, and Synergistic Effects of NO2 Adsorption Sites , 2009 .

[44]  J. Shao Linear Model Selection by Cross-validation , 1993 .

[45]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[46]  B. Lundqvist,et al.  NO oxidation properties of Pt(111) revealed by ab initio kinetic simulations , 2005 .

[47]  C. Stampfl Predicting surface phase transitions from ab initio based statistical mechanics and thermodynamics , 2007 .

[48]  Anton Van der Ven,et al.  Phase diagram of oxygen adsorbed on platinum (111) by first-principles investigation , 2004 .

[49]  J. Kitchin,et al.  Uncertainty and figure selection for DFT based cluster expansions for oxygen adsorption on Au and Pt (111) surfaces , 2009 .

[50]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[51]  C. Stampfl Surface processes and phase transitions from ab initio atomistic thermodynamics and statistical mechanics , 2005 .

[52]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[53]  J. Nørskov,et al.  Ammonia Synthesis from First-Principles Calculations , 2005, Science.

[54]  J. Nørskov,et al.  Universality in Heterogeneous Catalysis , 2002 .

[55]  Matthew Neurock,et al.  Reactivity theory of transition-metal surfaces: a Brønsted-Evans-Polanyi linear activation energy-free-energy analysis. , 2010, Chemical reviews.

[56]  J. Hafner,et al.  Precursor-mediated adsorption of oxygen on the (111) surfaces of platinum-group metals , 2000 .

[57]  B. Trout,et al.  Lateral interactions between oxygen atoms adsorbed on platinum (111) by first principles , 2004 .

[58]  W. Epling,et al.  NO2 inhibits the catalytic reaction of NO and O2 over Pt , 2005 .

[59]  F. Mittendorfer,et al.  Kinetic Monte Carlo simulations of temperature programed desorption of O/Rh(111). , 2010, The Journal of chemical physics.

[60]  A. van de Walle,et al.  Automating First-Principles Phase Diagram Calculations , 2002 .

[61]  G. Ertl Reactions at surfaces: from atoms to complexity (Nobel Lecture). , 2008, Angewandte Chemie.

[62]  M. Neurock,et al.  Modeling surface kinetics with first-principles-based molecular simulation , 1999 .

[63]  N. Saliba,et al.  Oxidation of Pt (111) by ozone (O3) under UHV conditions , 1999 .

[64]  J. Weaver,et al.  STM study of high-coverage structures of atomic oxygen on Pt(1 1 1): p(2 × 1) and Pt oxide chain structures , 2008 .

[65]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[66]  J. Weaver,et al.  Oxidation of Pt(1 1 1) by gas-phase oxygen atoms , 2005 .