DIFFERENTIAL ITEM FUNCTIONING AND THE MANTEL‐HAENSZEL PROCEDURE

The Mantel-Haenszel procedure is a noniterative contingency table method for estimating and testing a common two-factor association parameter in a 2×2×k table. As such it may be used to study “item bias” or differential item functioning in two groups of examinees. This technique is discussed in this context and compared to other related techniques as well as to item response theory methods.

[1]  P. Rosenbaum Comparing item characteristic curves , 1987 .

[2]  Neil J. Dorans,et al.  Demonstrating the utility of the standardization approach to assessing unexpected differential item performance on the Scholastic Aptitude Test. , 1986 .

[3]  A NEW ESTIMATOR OF THE VARIANCE OF THE MANTEL‐HAENSZEL LOG‐ODDS‐RATIO ESTIMATOR , 1986 .

[4]  H. V. D. Flier,et al.  DETECTING EXPERIMENTALLY INDUCED ITEM BIAS USING THE ITERATIVE LOGIT METHOD , 1985 .

[5]  P. Rosenbaum,et al.  Conditional Association and Unidimensionality in Monotone Latent Variable Models , 1985 .

[6]  P. Rosenbaum Comparing distributions of item responses for two groups , 1985 .

[7]  Paul W. Holland,et al.  An Alternate Definition of the ETS Delta Scale of Item Difficulty. Program Statistics Research. , 1985 .

[8]  W. Dana Flanders A new variance estimator for the Mantel-Haenszel odds ratio , 1985 .

[9]  P. Rosenbaum Testing the conditional independence and monotonicity assumptions of item response theory , 1984 .

[10]  David M. Williams,et al.  Accounting for Statistical Artifacts in Item Bias Research , 1984 .

[11]  Noel A Cressie,et al.  Characterizing the manifest probabilities of latent trait models , 1983 .

[12]  K. Y. Liang,et al.  The Variance of the Mantel-Haenszel Estimator , 1982 .

[13]  G. J. Mellenbergh Contingency Table Models for Assessing Item Bias , 1982 .

[14]  R. Berk Handbook of methods for detecting test bias , 1982 .

[15]  Leonard A. Marascuilo,et al.  STATISTICAL PROCEDURES FOR IDENTIFYING POSSIBLE SOURCES OF ITEM BIAS BASED ON x2 STATISTICS , 1981 .

[16]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[17]  P. Holland When are item response models consistent with observed data? , 1981 .

[18]  F. Lord Applications of Item Response Theory To Practical Testing Problems , 1980 .

[19]  Walter W. Hauck,et al.  The Large Sample Variance of the Mantel-Haenszel Estimator of a Common Odds Ratio , 1979 .

[20]  J. Scheuneman A METHOD OF ASSESSING BIAS IN TEST ITEMS , 1979 .

[21]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[22]  W. H. Angoff,et al.  ITEM‐RACE INTERACTION ON A TEST OF SCHOLASTIC APTITUDE1 , 1973 .

[23]  D. Cox,et al.  The analysis of binary data , 1971 .

[24]  M. W. Birch The Detection of Partial Association, I: The 2 × 2 Case , 1964 .

[25]  W. Haenszel,et al.  Statistical aspects of the analysis of data from retrospective studies of disease. , 1959, Journal of the National Cancer Institute.

[26]  W. G. Cochran Some Methods for Strengthening the Common χ 2 Tests , 1954 .