Fast non-Abelian geometric gates via transitionless quantum driving

[1]  E. Solano,et al.  Scalable quantum memory in the ultrastrong coupling regime , 2014, Scientific Reports.

[2]  Guilu Long,et al.  Universal Nonadiabatic Geometric Gates in Two-Qubit Decoherence-Free Subspaces , 2014, Scientific reports.

[3]  C. Zu,et al.  Experimental realization of universal geometric quantum gates with solid-state spins , 2014, Nature.

[4]  Stefan W. Hell,et al.  Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin , 2014, Nature Communications.

[5]  Guilu Long,et al.  Protecting geometric gates by dynamical decoupling , 2014 .

[6]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[7]  G Catelani,et al.  Flux qubits with long coherence times for hybrid quantum circuits. , 2014, Physical review letters.

[8]  A N Cleland,et al.  Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.

[9]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[10]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[11]  Andrew W. Cross,et al.  Implementing a strand of a scalable fault-tolerant quantum computing fabric , 2013, Nature Communications.

[12]  P. Zanardi,et al.  Quantum computation in noiseless subsystems with fast non-Abelian holonomies , 2013, 1308.1919.

[13]  P. Schmitteckert,et al.  Adiabatic tracking of a state: a new route to nonequilibrium physics. , 2013, Physical Review Letters.

[14]  R. Namiki Composability of partial-entanglement-breaking channels via entanglement-assisted local operations and classical communication , 2013, 1307.2727.

[15]  E. Sjoqvist,et al.  Validity of the rotating-wave approximation in nonadiabatic holonomic quantum computation , 2013, 1307.1536.

[16]  S. Berger,et al.  Experimental realization of non-Abelian non-adiabatic geometric gates , 2013, Nature.

[17]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[18]  Dieter Suter,et al.  Experimental implementation of assisted quantum adiabatic passage in a single spin. , 2012, Physical review letters.

[19]  Adolfo del Campo,et al.  Shortcuts to adiabaticity by counterdiabatic driving. , 2013, Physical review letters.

[20]  Erik Sjöqvist,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces. , 2012, Physical review letters.

[21]  D. M. Tong,et al.  Robustness of nonadiabatic holonomic gates , 2012, 1204.5144.

[22]  E Torrontegui,et al.  Multiple Schrödinger pictures and dynamics in shortcuts to adiabaticity. , 2011, Physical review letters.

[23]  Riccardo Mannella,et al.  High-fidelity quantum driving , 2011, Nature Physics.

[24]  D. M. Tong,et al.  Non-adiabatic holonomic quantum computation , 2011, 1107.5127.

[25]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[26]  Alexandre Blais,et al.  Superconducting qubit with Purcell protection and tunable coupling. , 2010, Physical review letters.

[27]  Enrique Solano,et al.  Resonant quantum gates in circuit quantum electrodynamics , 2010 .

[28]  J. G. Muga,et al.  Shortcut to adiabatic passage in two- and three-level atoms. , 2010, Physical review letters.

[29]  M. Berry,et al.  Transitionless quantum driving , 2009 .

[30]  Austin G. Fowler,et al.  Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.

[31]  T. Duty,et al.  Tuning the field in a microwave resonator faster than the photon lifetime , 2008 .

[32]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[33]  S. Girvin,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2004, Physical review letters.

[34]  Z. D. Wang,et al.  Unconventional geometric quantum computation. , 2003, Physical review letters.

[35]  A. Harrow,et al.  Practical scheme for quantum computation with any two-qubit entangling gate. , 2002, Physical review letters.

[36]  J. Cirac,et al.  Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.

[37]  W. Xiang-bin,et al.  Nonadiabatic conditional geometric phase shift with NMR. , 2001, Physical review letters.

[38]  Jonathan A. Jones,et al.  Geometric quantum computation using nuclear magnetic resonance , 2000, Nature.

[39]  G. Castagnoli,et al.  Geometric quantum computation with NMR , 1999, quant-ph/9910052.

[40]  P. Zanardi,et al.  Holonomic quantum computation , 1999, quant-ph/9904011.

[41]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[42]  Jeeva Anandan,et al.  Non-adiabatic non-abelian geometric phase , 1988 .

[43]  Aharonov,et al.  Phase change during a cyclic quantum evolution. , 1987, Physical review letters.

[44]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[45]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.