Fast non-Abelian geometric gates via transitionless quantum driving
暂无分享,去创建一个
D. M. Tong | Leong-Chuan Kwek | J. Zhang | Thi Ha Kyaw | Erik Sjöqvist | L. Kwek | D. Tong | E. Sjöqvist | T. Kyaw | J. Zhang | Junjie Zhang
[1] E. Solano,et al. Scalable quantum memory in the ultrastrong coupling regime , 2014, Scientific Reports.
[2] Guilu Long,et al. Universal Nonadiabatic Geometric Gates in Two-Qubit Decoherence-Free Subspaces , 2014, Scientific reports.
[3] C. Zu,et al. Experimental realization of universal geometric quantum gates with solid-state spins , 2014, Nature.
[4] Stefan W. Hell,et al. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin , 2014, Nature Communications.
[5] Guilu Long,et al. Protecting geometric gates by dynamical decoupling , 2014 .
[6] R. Barends,et al. Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.
[7] G Catelani,et al. Flux qubits with long coherence times for hybrid quantum circuits. , 2014, Physical review letters.
[8] A N Cleland,et al. Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.
[9] John M. Martinis,et al. Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .
[10] Daniel Sank,et al. Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.
[11] Andrew W. Cross,et al. Implementing a strand of a scalable fault-tolerant quantum computing fabric , 2013, Nature Communications.
[12] P. Zanardi,et al. Quantum computation in noiseless subsystems with fast non-Abelian holonomies , 2013, 1308.1919.
[13] P. Schmitteckert,et al. Adiabatic tracking of a state: a new route to nonequilibrium physics. , 2013, Physical Review Letters.
[14] R. Namiki. Composability of partial-entanglement-breaking channels via entanglement-assisted local operations and classical communication , 2013, 1307.2727.
[15] E. Sjoqvist,et al. Validity of the rotating-wave approximation in nonadiabatic holonomic quantum computation , 2013, 1307.1536.
[16] S. Berger,et al. Experimental realization of non-Abelian non-adiabatic geometric gates , 2013, Nature.
[17] Guilu Long,et al. Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.
[18] Dieter Suter,et al. Experimental implementation of assisted quantum adiabatic passage in a single spin. , 2012, Physical review letters.
[19] Adolfo del Campo,et al. Shortcuts to adiabaticity by counterdiabatic driving. , 2013, Physical review letters.
[20] Erik Sjöqvist,et al. Nonadiabatic holonomic quantum computation in decoherence-free subspaces. , 2012, Physical review letters.
[21] D. M. Tong,et al. Robustness of nonadiabatic holonomic gates , 2012, 1204.5144.
[22] E Torrontegui,et al. Multiple Schrödinger pictures and dynamics in shortcuts to adiabaticity. , 2011, Physical review letters.
[23] Riccardo Mannella,et al. High-fidelity quantum driving , 2011, Nature Physics.
[24] D. M. Tong,et al. Non-adiabatic holonomic quantum computation , 2011, 1107.5127.
[25] S. Girvin,et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.
[26] Alexandre Blais,et al. Superconducting qubit with Purcell protection and tunable coupling. , 2010, Physical review letters.
[27] Enrique Solano,et al. Resonant quantum gates in circuit quantum electrodynamics , 2010 .
[28] J. G. Muga,et al. Shortcut to adiabatic passage in two- and three-level atoms. , 2010, Physical review letters.
[29] M. Berry,et al. Transitionless quantum driving , 2009 .
[30] Austin G. Fowler,et al. Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.
[31] T. Duty,et al. Tuning the field in a microwave resonator faster than the photon lifetime , 2008 .
[32] S. Girvin,et al. Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.
[33] S. Girvin,et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2004, Physical review letters.
[34] Z. D. Wang,et al. Unconventional geometric quantum computation. , 2003, Physical review letters.
[35] A. Harrow,et al. Practical scheme for quantum computation with any two-qubit entangling gate. , 2002, Physical review letters.
[36] J. Cirac,et al. Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.
[37] W. Xiang-bin,et al. Nonadiabatic conditional geometric phase shift with NMR. , 2001, Physical review letters.
[38] Jonathan A. Jones,et al. Geometric quantum computation using nuclear magnetic resonance , 2000, Nature.
[39] G. Castagnoli,et al. Geometric quantum computation with NMR , 1999, quant-ph/9910052.
[40] P. Zanardi,et al. Holonomic quantum computation , 1999, quant-ph/9904011.
[41] Lloyd,et al. Almost any quantum logic gate is universal. , 1995, Physical review letters.
[42] Jeeva Anandan,et al. Non-adiabatic non-abelian geometric phase , 1988 .
[43] Aharonov,et al. Phase change during a cyclic quantum evolution. , 1987, Physical review letters.
[44] Frank Wilczek,et al. Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .
[45] M. Berry. Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.