Fabrication and characterization of friction stir–processed Mg-Zn-Ca biomaterials strengthened with MgO particles

[1]  A. Hadadzadeh,et al.  Thermomechanical processing of an ultralight Mg-14Li-1Al alloy , 2020, The International Journal of Advanced Manufacturing Technology.

[2]  Sameehan S. Joshi,et al.  In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. , 2020, Materials science & engineering. C, Materials for biological applications.

[3]  A. Kang,et al.  Characterization and electrochemical corrosion behaviour of FSPed WE43/nano-SiC surface composite , 2020 .

[4]  A. Salandari-Rabori,et al.  Effect of Ca additions on evolved microstructures and subsequent mechanical properties of a cast and hot-extruded Mg–Zn–Zr magnesium alloy , 2019, The International Journal of Advanced Manufacturing Technology.

[5]  M. Fivel,et al.  Unveiling the impact of the effective particles distribution on strengthening mechanisms: A multiscale characterization of Mg+Y2O3 nanocomposites , 2019, Materials Science and Engineering: A.

[6]  B. Sunil,et al.  Magnesium/fish bone derived hydroxyapatite composites by friction stir processing: studies on mechanical behaviour and corrosion resistance , 2019, Bulletin of Materials Science.

[7]  Wenhui Wang,et al.  Local misorientation accelerates corrosion in biodegradable Mg. , 2019, Acta biomaterialia.

[8]  Dongdong Liu,et al.  Preparation and characterization of biodegradable Mg-Zn-Ca/MgO nanocomposites for biomedical applications , 2018, Materials Characterization.

[9]  P. Roy,et al.  Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories. , 2018, Journal of the mechanical behavior of biomedical materials.

[10]  Basil M. Darras,et al.  Experimental investigation of Mg/SiC composite fabrication via friction stir processing , 2017 .

[11]  S. David,et al.  In situ neutron diffraction analyses of temperature and stresses during friction stir processing of Mg-3Al-1Zn magnesium alloy , 2017 .

[12]  B. Anand Ronald,et al.  Experimental investigations on the enhancement of mechanical properties of magnesium-based hybrid metal matrix composites through friction stir processing , 2017 .

[13]  G. Song,et al.  Corrosion and passivation of magnesium alloys , 2016 .

[14]  Y. Shin,et al.  Development of mechanical properties in a CaO added AZ31 magnesium alloy processed by equal-channel angular pressing , 2016 .

[15]  Shahrouz Zamani Khalajabadi,et al.  The effect of MgO on the biodegradation, physical properties and biocompatibility of a Mg/HA/MgO nanocomposite manufactured by powder metallurgy method , 2016 .

[16]  I. Jones,et al.  Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys. , 2015, Materials science & engineering. C, Materials for biological applications.

[17]  Liqing Chen,et al.  Processing, Microstructures, and Mechanical Properties of Magnesium Matrix Composites: A Review , 2014, Acta Metallurgica Sinica (English Letters).

[18]  A. Gerlich,et al.  Fabrication of metal matrix composites by friction stir processing with different Particles and processing parameters , 2014 .

[19]  H. Bakhsheshi‐Rad,et al.  Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys , 2012 .

[20]  E. Han,et al.  The role of second phases in the corrosion behavior of Mg–5Zn alloy , 2012 .

[21]  Z. Fan,et al.  Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology , 2012 .

[22]  Wei-jia Tang,et al.  On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction , 2012 .

[23]  N. Birbilis,et al.  Revealing the relationship between grain size and corrosion rate of metals , 2010 .

[24]  G. Faraji,et al.  Producing of AZ91/SiC composite by friction stir processing (FSP) , 2010 .

[25]  Manoj Gupta,et al.  Characterization of High Performance Mg/MgO Nanocomposites , 2007 .

[26]  A. Kokabi,et al.  The influence of the ratio of “rotational speed/traverse speed” (ω/v) on mechanical properties of AZ31 friction stir welds , 2006 .

[27]  M. Barnett,et al.  A semianalytical sachs model for the flow stress of a magnesium alloy , 2006 .

[28]  J. C. Huang,et al.  Mg based nano-composites fabricated by friction stir processing , 2006 .

[29]  Y. Morisada,et al.  MWCNTs/AZ31 surface composites fabricated by friction stir processing , 2006 .

[30]  W. Zhou,et al.  Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy , 2000 .

[31]  N. Aung,et al.  Evaluation of microstructural e ects on corrosion behaviour of AZ 91 D magnesium alloy , 2000 .

[32]  G. Song,et al.  Corrosion mechanisms of magnesium alloys , 1999 .