Role of Au-TiO2 interfacial sites in enhancing the electrocatalytic glycerol oxidation performance

[1]  J. Sempionatto,et al.  Mechanistic aspects of glycerol electrooxidation on Pt(111) electrode in alkaline media , 2018 .

[2]  David H. K. Jackson,et al.  Effect of atomic-layer-deposited TiO2 on carbon-supported Ni catalysts for electrocatalytic glycerol oxidation in alkaline media , 2017 .

[3]  B. Yan,et al.  Hollow AuxAg/Au core/shell nanospheres as efficient catalysts for electrooxidation of liquid fuels. , 2017, Nanoscale.

[4]  David H. K. Jackson,et al.  In Situ Electrochemical Activation of Atomic Layer Deposition Coated MoS2 Basal Planes for Efficient Hydrogen Evolution Reaction , 2017 .

[5]  Jeehoon Han,et al.  Coproducing Value-added Chemicals and Hydrogen with Electrocatalytic Glycerol Oxidation Technology: Experimental and Techno-economic Investigations , 2017 .

[6]  S. Choi,et al.  The Role of Ruthenium on Carbon‐Supported PtRu Catalysts for Electrocatalytic Glycerol Oxidation under Acidic Conditions , 2017 .

[7]  Danzhen Li,et al.  Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2 , 2017 .

[8]  R. Kumar,et al.  Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment , 2016, Scientific Reports.

[9]  G. Huber,et al.  Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process , 2016 .

[10]  David H. K. Jackson,et al.  Enhanced Activity and Stability of TiO2-Coated Cobalt/Carbon Catalysts for Electrochemical Water Oxidation , 2015 .

[11]  F. Xiao,et al.  Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds , 2015, Nature Communications.

[12]  Tsunehiro Tanaka,et al.  The support effect on the size and catalytic activity of thiolated Au₂₅ nanoclusters as precatalysts. , 2015, Nanoscale.

[13]  David H. K. Jackson,et al.  Catalyst Design with Atomic Layer Deposition , 2015 .

[14]  G. Tremiliosi‐Filho,et al.  Influence of silver on the glycerol electro-oxidation over AuAg/C catalysts in alkaline medium: a cyclic voltammetry and in situ FTIR spectroscopy study , 2014 .

[15]  Hongbin Li,et al.  Quantifying thiol–gold interactions towards the efficient strength control , 2014, Nature Communications.

[16]  Wenzheng Li,et al.  Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration , 2014 .

[17]  Stacey F. Bent,et al.  A brief review of atomic layer deposition: from fundamentals to applications , 2014 .

[18]  G. Huber,et al.  Selective glycerol oxidation by electrocatalytic dehydrogenation. , 2014, ChemSusChem.

[19]  A. Marshall,et al.  Influence of particle size on the electrocatalytic oxidation of glycerol over carbon-supported gold nanoparticles , 2014 .

[20]  S. Baranton,et al.  Bi-modified palladium nanocubes for glycerol electrooxidation , 2013 .

[21]  Wenzheng Li,et al.  Supported Pt, Pd and Au nanoparticle anode catalysts for anion-exchange membrane fuel cells with glycerol and crude glycerol fuels , 2013 .

[22]  A. Marshall,et al.  The effect of MnO2 loading on the glycerol electrooxidation activity of Au/MnO2/C catalysts , 2013 .

[23]  J. R. Ommen,et al.  Atomic layer deposition of platinum clusters on titania nanoparticles at atmospheric pressure , 2013 .

[24]  T. Mikolajick,et al.  Atomic layer deposition of anatase TiO2 on porous electrodes for dye-sensitized solar cells , 2013 .

[25]  P. Rodríguez,et al.  Highly Selective Electro-Oxidation of Glycerol to Dihydroxyacetone on Platinum in the Presence of Bismuth , 2012 .

[26]  S. Jiang,et al.  A remarkable activity of glycerol electrooxidation on gold in alkaline medium , 2012 .

[27]  S. Choi,et al.  Efficient electrooxidation of biomass-derived glycerol over a graphene-supported PtRu electrocatalyst , 2011 .

[28]  M. Koper,et al.  Mechanism of the Catalytic Oxidation of Glycerol on Polycrystalline Gold and Platinum Electrodes , 2011 .

[29]  A. Bell,et al.  Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. , 2011, Journal of the American Chemical Society.

[30]  S. Choi,et al.  Highly active and stable PtRuSn/C catalyst for electrooxidations of ethylene glycol and glycerol , 2011 .

[31]  G. Camara,et al.  The formation of carbon dioxide during glycerol electrooxidation in alkaline media: First spectroscopic evidences , 2010 .

[32]  M. Koper,et al.  Combining voltammetry with HPLC: application to electro-oxidation of glycerol. , 2010, Analytical chemistry.

[33]  Marcelo Carmo,et al.  Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications , 2007 .

[34]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[35]  H. Fu,et al.  Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. , 2005, The journal of physical chemistry. B.