Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images

[1]  Management of water resources for grasslands Research Laboratory – USDA-ARS, USA , 2019, Improving grassland and pasture management in temperate agriculture.

[2]  Renaud Mathieu,et al.  Estimating above ground biomass as an indicator of carbon storage in vegetated wetlands of the grassland biome of South Africa , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[3]  Jiaguo Qi,et al.  Grassland canopy cover and aboveground biomass in Mongolia and Inner Mongolia: Spatiotemporal estimates and controlling factors , 2018, Remote Sensing of Environment.

[4]  R. Collins,et al.  Improving grassland and pasture management in temperate agriculture , 2018 .

[5]  P. Gowda,et al.  Carbon dioxide and water vapor fluxes in winter wheat and tallgrass prairie in central Oklahoma. , 2018, The Science of the total environment.

[6]  A. Evans,et al.  Quantifying grazing patterns using a new growth function based on MODIS Leaf Area Index , 2018 .

[7]  Yanlian Zhou,et al.  Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes , 2018 .

[8]  Jinwei Dong,et al.  Characterizing the encroachment of juniper forests into sub-humid and semi-arid prairies from 1984 to 2010 using PALSAR and Landsat data , 2018 .

[9]  Dario Papale,et al.  Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data , 2018 .

[10]  Severino G. Salmo,et al.  Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery , 2017 .

[11]  Alexandre Bouvet,et al.  Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications , 2017 .

[12]  Gang Fu,et al.  Validation of MODIS collection 6 FPAR/LAI in the alpine grassland of the Northern Tibetan Plateau , 2017 .

[13]  Prasanna H. Gowda,et al.  Examining the short-term impacts of diverse management practices on plant phenology and carbon fluxes of Old World bluestems pasture , 2017 .

[14]  George L. Geissler,et al.  Mapping the dynamics of eastern redcedar encroachment into grasslands during 1984–2010 through PALSAR and time series Landsat images , 2017 .

[15]  Hongjie Xie,et al.  Multi-factor modeling of above-ground biomass in alpine grassland: A case study in the Three-River Headwaters Region, China , 2016 .

[16]  E. Dwyer,et al.  Satellite remote sensing of grasslands: from observation to management—a review , 2016 .

[17]  Scott J. Goetz,et al.  Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data , 2016 .

[18]  Onisimo Mutanga,et al.  Progress in the remote sensing of C3 and C4 grass species aboveground biomass over time and space , 2016 .

[19]  Xu Wang,et al.  Predicting Grassland Leaf Area Index in the Meadow Steppes of Northern China: A Comparative Study of Regression Approaches and Hybrid Geostatistical Methods , 2016, Remote. Sens..

[20]  Maxim Shoshany,et al.  Mediterranean shrublands biomass estimation using Sentinel-1 and Sentinel-2 , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[21]  M. Claverie,et al.  Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. , 2016, Remote sensing of environment.

[22]  R. Nemani,et al.  Evaluation of MODIS LAI/FPAR Product Collection 6. Part 1: Consistency and Improvements , 2016, Remote. Sens..

[23]  P. Poschlod,et al.  Grazing vs. mowing: A meta-analysis of biodiversity benefits for grassland management , 2016 .

[24]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[25]  Christopher O. Justice,et al.  A 30+ Year AVHRR LAI and FAPAR Climate Data Record: Algorithm Description and Validation , 2016, Remote. Sens..

[26]  Kees de Bie,et al.  Early assessment of seasonal forage availability for mitigating the impact of drought on East African pastoralists , 2016 .

[27]  Mehrez Zribi,et al.  Coupling SAR C-Band and Optical Data for Soil Moisture and Leaf Area Index Retrieval Over Irrigated Grasslands , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[28]  M. Feng,et al.  Impact of spectral saturation on leaf area index and aboveground biomass estimation of winter wheat , 2016 .

[29]  Lijuan Liu,et al.  A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems , 2016, Int. J. Digit. Earth.

[30]  Yingxin Gu,et al.  Developing a 30-m grassland productivity estimation map for central Nebraska using 250-m MODIS and 30-m Landsat-8 observations , 2015 .

[31]  Ruben Van De Kerchove,et al.  Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[32]  M. Schlerf,et al.  Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[33]  Nitin K. Tripathi,et al.  Grassland Growth in Response to Climate Variability in the Upper Indus Basin, Pakistan , 2015 .

[34]  L. Bruzzone,et al.  Retrieval of Leaf Area Index in mountain grasslands in the Alps from MODIS satellite imagery , 2015 .

[35]  Cyrus Samimi,et al.  Comparing the Dry Season In-Situ Leaf Area Index (LAI) Derived from High-Resolution RapidEye Imagery with MODIS LAI in a Namibian Savanna , 2015, Remote. Sens..

[36]  C. Woodcock,et al.  Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images , 2015 .

[37]  Dandan Xu,et al.  Some Insights on Grassland Health Assessment Based on Remote Sensing , 2015, Sensors.

[38]  Inci Güneralp,et al.  Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[39]  Stuart M. Wilson,et al.  Experimental evidence that invasive grasses use allelopathic biochemicals as a potential mechanism for invasion: chemical warfare in nature , 2014, Plant and Soil.

[40]  E. Nkonya,et al.  Biomass Productivity-Based Mapping of Global Land Degradation Hotspots , 2014 .

[41]  Samuel Corgne,et al.  Combined Use of Multi-Temporal Optical and Radar Satellite Images for Grassland Monitoring , 2014, Remote. Sens..

[42]  A. Challinor,et al.  Climate variability and vulnerability to climate change: a review , 2014, Global change biology.

[43]  B. Wylie,et al.  Linking Phenology and Biomass Productivity in South Dakota Mixed-Grass Prairie , 2013 .

[44]  Peter M. Atkinson,et al.  Ecological sustainability in rangelands: the contribution of remote sensing , 2013 .

[45]  A. Gonsamo,et al.  Deriving land surface phenology indicators from CO2 eddy covariance measurements , 2013 .

[46]  V. Klemas Remote Sensing of Coastal Wetland Biomass: An Overview , 2013 .

[47]  D. Peddle,et al.  Quantifying biomass production on rangeland in southern Alberta using SPOT imagery , 2013 .

[48]  David P. Billesbach,et al.  Carbon, water, and heat flux responses to experimental burning and drought in a tallgrass prairie , 2012 .

[49]  Andrew K. Skidmore,et al.  Estimation of grassland biomass and nitrogen using MERIS data , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[50]  Michael E. Schaepman,et al.  Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land , 2012 .

[51]  Mark A. Friedl,et al.  Long-Term Detection of Global Vegetation Phenology from Satellite Instruments , 2012 .

[52]  Luis Alonso,et al.  Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3 , 2012 .

[53]  G. A. B. Yiran,et al.  A synthesis of remote sensing and local knowledge approaches in land degradation assessment in the Bawku East District, Ghana , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[54]  A. Skidmore,et al.  Mapping grassland leaf area index with airborne hyperspectral imagery : a comparison study of statistical approaches and inversion of radiative transfer models , 2011 .

[55]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[56]  Joseph R. Buckley,et al.  Monitoring grasslands with radarsat 2 quad-pol imagery , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[57]  Yanhong Tang,et al.  Application of the ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghai‐Tibetan grasslands , 2010 .

[58]  J. Dash,et al.  Estimating the relative abundance of C3 and C4 grasses in the Great Plains from multi-temporal MTCI data: issues of compositing period and spatial generalizability , 2010 .

[59]  Martha C. Anderson,et al.  Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale , 2009 .

[60]  A. Skidmore,et al.  Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland , 2008 .

[61]  J. Derner,et al.  CARBON SEQUESTRATION AND RANGELANDS: A SYNTHESIS OF LAND MANAGEMENT AND PRECIPITATION EFFECTS , 2007 .

[62]  Lan Xu,et al.  Using Weather Data to Explain Herbage Yield on Three Great Plains Plant Communities , 2007 .

[63]  F. Baret,et al.  Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data : Principles and validation , 2006 .

[64]  Christopher B. Field,et al.  Diverse responses of phenology to global changes in a grassland ecosystem , 2006, Proceedings of the National Academy of Sciences.

[65]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[66]  J. Mustard,et al.  Green leaf phenology at Landsat resolution: Scaling from the field to the satellite , 2006 .

[67]  Yanhong Tang,et al.  Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China , 2005 .

[68]  Changsheng Li,et al.  Mapping paddy rice agriculture in southern China using multi-temporal MODIS images , 2005 .

[69]  J. Ellis,et al.  Vulnerability of the Asian Typical Steppe to Grazing and Climate Change , 2004 .

[70]  D. Engle,et al.  Predicting juniper encroachment and CRP effects on avian community dynamics in southern mixed-grass prairie, USA , 2004 .

[71]  R. Colombo,et al.  Retrieval of leaf area index in different vegetation types using high resolution satellite data , 2003 .

[72]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[73]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[74]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[75]  S. Leblanc,et al.  Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements , 2002 .

[76]  Peter Poschlod,et al.  Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna , 2002 .

[77]  B. Wylie,et al.  Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands a case study , 2002 .

[78]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[79]  Simonetta Paloscia,et al.  The potential of C- and L-band SAR in estimating vegetation biomass: the ERS-1 and JERS-1 experiments , 1999, IEEE Trans. Geosci. Remote. Sens..

[80]  D. O. Hall,et al.  The global carbon sink: a grassland perspective , 1998 .

[81]  Andrew D. Friend,et al.  A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0) , 1997 .

[82]  I. C. Prentice,et al.  An integrated biosphere model of land surface processes , 1996 .

[83]  I. C. Prentice,et al.  BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types , 1996 .

[84]  J. Chen,et al.  Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images , 1996 .

[85]  Jesslyn F. Brown,et al.  Measuring phenological variability from satellite imagery , 1994 .

[86]  J. Michaelsen,et al.  Estimating grassland biomass and leaf area index using ground and satellite data , 1994 .

[87]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[88]  Hannah M. Cooper,et al.  Quantification of sawgrass marsh aboveground biomass in the coastal Everglades using object-based ensemble analysis and Landsat data , 2018 .

[89]  Sepideh Karimi,et al.  Generalizability of gene expression programming and random forest methodologies in estimating cropland and grassland leaf area index , 2018, Comput. Electron. Agric..

[90]  H. Xie,et al.  Modeling grassland above-ground biomass based on artificial neural network and remote sensing in the Three-River Headwaters Region , 2018 .

[91]  K. Swing Challenges to Conservation , 2017 .

[92]  E. Nkonya,et al.  Global Estimates of the Impacts of Grassland Degradation on Livestock Productivity from 2001 to 2011 , 2016 .

[93]  Min Liu,et al.  Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches , 2016 .

[94]  A. Franzluebbers,et al.  Enhancing soil and landscape quality in smallholder grazing systems. , 2014 .

[95]  M. Zortea,et al.  OBJECT-BASED CLOUD AND CLOUD SHADOW DETECTION IN LANDSAT IMAGES FOR TROPICAL FOREST MONITORING , 2012 .

[96]  G. Yiran,et al.  A Synthesis of Remote Sensing and Local Knowledge Approaches in Assessing Land Degradation in the Bawku East District – Ghana , 2011 .

[97]  M. Sahebi,et al.  A review on biomass estimation methods using synthetic aperture radar data. , 2011 .

[98]  Jingyun Fang,et al.  Aboveground biomass in Tibetan grasslands , 2009 .

[99]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[100]  Yunqian Ma,et al.  Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.