Study of electron solvation in liquid ammonia using quantum path integral Monte Carlo calculations

The solvation of an electron in liquid ammonia has been studied using quantum path integral Monte Carlo calculations. In agreement with previous experimental and theoretical deductions the charge distribution of the electron is compact. Various distribution functions characterizing the structure around the solvated electron are presented and the surrounding solvent structure is compared to that around a classical atomic anion. A qualitative discussion is given of the absorption spectrum based upon the form of the complex time dependence of the electron mean squared displacement correlation function.

[1]  M. Klein,et al.  Simulation of an excess electron in a hard sphere fluid , 1985 .

[2]  Hall,et al.  Behavior of an electron in helium gas. , 1985, Physical review. B, Condensed matter.

[3]  B. Berne,et al.  Path integral methods for simulating electronic spectra , 1985 .

[4]  D. Chandler,et al.  Excess electrons in simple fluids. II. Numerical results for the hard sphere solvent , 1984 .

[5]  Bruce J. Berne,et al.  Nonergodicity in path integral molecular dynamics , 1984 .

[6]  R. W. Hall,et al.  A Path Integral Monte Carlo Study of Liquid Neon and the Quantum Effective Pair Potential , 1984 .

[7]  D. Ceperley,et al.  Simulation of quantum many-body systems by path-integral methods , 1984 .

[8]  N. Kestner,et al.  Studies of the stability of negatively charged water clusters , 1984 .

[9]  P. Krebs Localization of excess electrons in dense polar vapors , 1984 .

[10]  G. Lepoutre Colloque Weyl: a short history , 1984 .

[11]  M. Klein,et al.  Computer simulation of muonium in water , 1984 .

[12]  R. Impey,et al.  A simple intermolecular potential for liquid ammonia , 1984 .

[13]  M. Parrinello,et al.  Study of an F center in molten KCl , 1984 .

[14]  R. A. Kuharski,et al.  Quantum mechanical contributions to the structure of liquid water , 1984 .

[15]  Roger Impey,et al.  Hydration and mobility of ions in solution , 1983 .

[16]  G. Jacucci,et al.  Monte Carlo calculation of the radial distribution function of quantum hard spheres at finite temperatures using path integrals with boundary conditions , 1983 .

[17]  A. Jain,et al.  The scattering of slow positrons by CH4 and NH3 , 1983 .

[18]  J. Thompson,et al.  Electron bound states of a dielectric sphere , 1982 .

[19]  B. Berne,et al.  On path integral Monte Carlo simulations , 1982 .

[20]  P. Wolynes,et al.  Convenient and accurate discretized path integral methods for equilibrium quantum mechanical calculations , 1981 .

[21]  I. R. Mcdonald,et al.  Microscopic simulation of a strongly coupled hydrogen plasma , 1981 .

[22]  F. Jou,et al.  Isotope and temperature effects on the optical absorption spectrum of solvated electrons in liquid ammonia , 1981 .

[23]  B. Webster Colloque Weyl V. The Fifth International Conference on Excess Electrons and Metal-Ammonia Solutions. Introductory Remarks , 1980 .

[24]  M. Rudge Electron scattering by the hydrogen-halides. I. e--HF collisions , 1980 .

[25]  J. Jortner,et al.  Effects of phase density on ionization processes and electron localization in fluids , 1977 .

[26]  N. Kestner An improved model of the localized electron in polar fluids , 1977 .

[27]  A. Narten,et al.  Liquid ammonia: Molecular correlation functions from x‐ray diffraction , 1977 .

[28]  C. Deutsch,et al.  Diffraction corrections to the equilibrium properties of the classical electron gas. Pair correlation function , 1976 .

[29]  M. Newton Role of ab initio calculations in elucidating properties of hydrated and ammoniated electrons , 1975 .

[30]  J. L. Dye Colloque Weyl IV. Electrons in Fluids - The Nature of Metal-Ammonia Solutions. Introductory Remarks , 1975 .

[31]  Y. Itikawa Effects of the Polarization Force on the Rotational Transition in Polyatomic Molecules by Electron Collision , 1971 .

[32]  A. Barker Effective Potentials between the Components of a Hydrogeneous Plasma , 1971 .

[33]  N. Mott,et al.  Metal-ammonia solutions , 1969 .

[34]  J. A. Barker,et al.  Structure of water; A Monte Carlo calculation , 1969 .

[35]  Jr Robert W. Shaw Optimum Form of a Modified Heine-Abarenkov Model Potential for the Theory of Simple Metals , 1968 .

[36]  L. Collins,et al.  Exchange in low-energy electron-molecule scattering: Orthogonalization and free-electron-gas approximations for collisions with polar and nonpolar molecules , 1981 .

[37]  Joshua Jortner,et al.  Electrons in Fluids , 1973 .

[38]  Volker Heine,et al.  The Pseudopotential Concept , 1970 .

[39]  R. Storer PATH-INTEGRAL CALCULATION OF THE QUANTUM-STATISTICAL DENSITY MATRIX FOR ATTRACTIVE COULOMB FORCES. , 1968 .

[40]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .