Spatially dispersive functional optical metamaterials

Abstract. Functional optical metamaterials usually consist of absorbing, anisotropic, and often noncentrosymmetric structures of a size that is only a few times smaller than the wavelength of visible light. If the structures were substantially smaller, excitation of higher-order electromagnetic multipoles in them, including magnetic dipoles, would be inefficient. The required non-negligible size of metamolecules, however, makes the material spatially dispersive, so that its optical characteristics depend on the light propagation direction. We consider the possibility to use this usually unwanted effect. We present a theoretical model that allows one to study the interaction of such spatially dispersive metamaterials with optical beams. Applying the model, we show that a strong spatial dispersion, combined with optical anisotropy and absorption, can be used to efficiently control propagational characteristics of optical beams and create new types of optical elements.

[1]  Matti Kaivola,et al.  Internally twisted spatially dispersive optical metamaterials , 2014 .

[2]  C. Simovski Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices , 2007 .

[3]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[4]  E. N. Economou,et al.  Saturation of the magnetic response of split-ring resonators at optical frequencies. , 2005, Physical review letters.

[5]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[6]  J. Valentine,et al.  Realization of an all-dielectric zero-index optical metamaterial , 2013, Nature Photonics.

[7]  Alessandro Tuniz,et al.  Weaving the invisible thread: design of an optically invisible metamaterial fibre. , 2010, Optics express.

[8]  Carsten Rockstuhl,et al.  Retrieving effective parameters for metamaterials at oblique incidence , 2008 .

[9]  S. Kawata,et al.  Plasmonics for near-field nano-imaging and superlensing , 2009 .

[10]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[11]  Matti Kaivola,et al.  Functional optical metamaterials employing spatial dispersion and absorption , 2014, Optics & Photonics - NanoScience + Engineering.

[12]  P. Grahn,et al.  Electromagnetic multipole theory for optical nanomaterials , 2012, 1206.0530.

[13]  Peter T. Rakich,et al.  Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal , 2006, Nature materials.

[14]  Nader Engheta,et al.  Experimental verification of n = 0 structures for visible light. , 2013, Physical review letters.

[15]  A. Shevchenko,et al.  Electric dipole-free interaction of visible light with pairs of subwavelength-size silver particles , 2012 .

[16]  Design of an optically invisible metamaterial fibre , 2010, 35th Australian Conference on Optical Fibre Technology.

[17]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[18]  Dennis W Prather,et al.  Experimental demonstration of self-collimation inside a three-dimensional photonic crystal. , 2006, Physical review letters.

[19]  Nader Engheta,et al.  Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. , 2006, Physical review letters.

[20]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[21]  Matti Kaivola,et al.  Internally twisted non-centrosymmetric optical metamaterials , 2014, Photonics Europe.

[22]  Carsten Rockstuhl,et al.  Homogenization of resonant chiral metamaterials , 2010, 1008.4295.

[23]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[24]  S. Maier,et al.  Mu and epsilon near zero metamaterials for perfect coherence and new antenna designs. , 2014, Optics express.

[25]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[26]  Nader Engheta,et al.  Experimental Verification of n 1⁄4 0 Structures for Visible Light , 2012 .

[27]  A. Shevchenko,et al.  Theoretical description of bifacial optical nanomaterials. , 2013, Optics express.

[28]  Bernard D. Casse,et al.  Super-resolution imaging using a three-dimensional metamaterials nanolens , 2010 .

[29]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[30]  Nader Engheta,et al.  Pursuing Near-Zero Response , 2013, Science.

[31]  M. Kaivola,et al.  Interferometric description of optical metamaterials , 2013, 1303.6432.

[32]  Antoine Moreau,et al.  Mesoscopic self-collimation and slow light in all-positive index layered photonic crystals. , 2011, Physical review letters.

[33]  A. Shevchenko,et al.  Multipole polarizability of a nanodimer in optical waves , 2013 .

[34]  Xin Zhang,et al.  Single-layer terahertz metamaterials with bulk optical constants , 2012 .

[35]  Srinivas Sridhar,et al.  Photonic crystals: Imaging by flat lens using negative refraction , 2003, Nature.

[36]  M. Dressel,et al.  k-dependent optics of nanostructures: Spatial dispersion of metallic nanorings and split-ring resonators , 2012 .