Nonlithium Metal–Sulfur Batteries: Steps Toward a Leap

Present mobile devices, transportation tools, and renewable energy technologies are more dependent on newly developed battery chemistries than ever before. Intrinsic properties, such as safety, high energy density, and cheapness, are the main objectives of rechargeable batteries that have driven their overall technological progress over the past several decades. Unfortunately, it is extremely hard to achieve all these merits simultaneously at present. Alternatively, exploration of the most suitable batteries to meet the specific requirements of an individual application tends to be a more reasonable and easier choice now and in the near future. Based on this concept, here, a range of promising alternatives to lithium-sulfur batteries that are constructed with non-Li metal anodes (e.g., Na, K, Mg, Ca, and Al) and sulfur cathodes are discussed. The systems governed by these new chemistries offer high versatility in meeting the specific requirements of various applications, which is directly linked with the broad choice in battery chemistries, materials, and systems. Herein, the operating principles, materials, and remaining issues for each targeted battery characteristics are comprehensively reviewed. By doing so, it is hoped that their design strategies are illustrated and light is shed on the future exploration of new metal-sulfur batteries and advanced materials.

[1]  A. Manthiram,et al.  Room-Temperature Aluminum-Sulfur Batteries with a Lithium-Ion-Mediated Ionic Liquid Electrolyte , 2018 .

[2]  Junhe Yang,et al.  Nano‐Copper‐Assisted Immobilization of Sulfur in High‐Surface‐Area Mesoporous Carbon Cathodes for Room Temperature Na‐S Batteries , 2014 .

[3]  Li-Jun Wan,et al.  A High‐Energy Room‐Temperature Sodium‐Sulfur Battery , 2014, Advanced materials.

[4]  Donghai Wang,et al.  Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries. , 2016, Nano letters.

[5]  Adam P. Cohn,et al.  A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability. , 2017, Nano letters.

[6]  P. Gifford,et al.  An Aluminum/Chlorine Rechargeable Cell Employing a Room Temperature Molten Salt Electrolyte , 1988 .

[7]  Allen G. Oliver,et al.  Structure and compatibility of a magnesium electrolyte with a sulphur cathode , 2011, Nature communications.

[8]  Shubin Yang,et al.  Simultaneous Formation of Artificial SEI Film and 3D Host for Stable Metallic Sodium Anodes. , 2017, ACS applied materials & interfaces.

[9]  Feng Li,et al.  Kinetically Enhanced Electrochemical Redox of Polysulfides on Polymeric Carbon Nitrides for Improved Lithium-Sulfur Batteries. , 2016, ACS applied materials & interfaces.

[10]  A. Menon,et al.  Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes , 2018 .

[11]  Feng Li,et al.  More Reliable Lithium‐Sulfur Batteries: Status, Solutions and Prospects , 2017, Advanced materials.

[12]  Lixia Yuan,et al.  Confined selenium within porous carbon nanospheres as cathode for advanced Li–Se batteries , 2014 .

[13]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[14]  Xiulei Ji,et al.  Potassium Secondary Batteries. , 2017, ACS applied materials & interfaces.

[15]  Zhiqiang Niu,et al.  Foldable All‐Solid‐State Supercapacitors Integrated with Photodetectors , 2017 .

[16]  R. Dillon,et al.  Investigation of a novel aqueous aluminum/sulfur battery , 1993 .

[17]  George W. Crabtree,et al.  The energy-storage frontier: Lithium-ion batteries and beyond , 2015 .

[18]  D. Zhao,et al.  Achieving High-Performance Room-Temperature Sodium-Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres. , 2016, Journal of the American Chemical Society.

[19]  Feng Li,et al.  A high tenacity electrode by assembly of a soft sorbent and a hard skeleton for lithium–sulfur batteries , 2017 .

[20]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[21]  A. Manthiram,et al.  Na2S-carbon nanotube fabric electrodes for room-temperature sodium-sulfur batteries. , 2015, Chemistry.

[22]  Wei Wang,et al.  A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation , 2013, Scientific Reports.

[23]  Jou-Hyeon Ahn,et al.  Room-temperature solid-state sodium/sulfur battery , 2006 .

[24]  Xi‐Wen Du,et al.  N‐Doped Graphene Natively Grown on Hierarchical Ordered Porous Carbon for Enhanced Oxygen Reduction , 2013, Advanced materials.

[25]  Quan-hong Yang,et al.  Porous Al Current Collector for Dendrite-Free Na Metal Anodes. , 2017, Nano letters.

[26]  E. Menke,et al.  The Roles of V2O5 and Stainless Steel in Rechargeable Al–Ion Batteries , 2013 .

[27]  Jun Liu,et al.  Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage , 2014, Nature Communications.

[28]  Ji‐Guang Zhang,et al.  Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes , 2018 .

[29]  A. Manthiram,et al.  Highly Reversible Room-Temperature Sulfur/Long-Chain Sodium Polysulfide Batteries. , 2014, The journal of physical chemistry letters.

[30]  R. S. Gordon,et al.  Relative Effects of Phase Conversion and Grain Size on Sodium Ion Conduction in Polycrystalline, Lithia‐Stabilized β‐Alumina , 1978 .

[31]  Zhe Yuan,et al.  Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. , 2016, Nano letters.

[32]  S. Hashmi,et al.  Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium–sulfur batteries , 2011 .

[33]  A. Manthiram,et al.  Performance Enhancement and Mechanistic Studies of Magnesium–Sulfur Cells with an Advanced Cathode Structure , 2016 .

[34]  Yi Cui,et al.  A Highly Reversible Room-Temperature Sodium Metal Anode , 2015, ACS central science.

[35]  Yusheng Yang,et al.  A lithium-sulfur cathode with high sulfur loading and high capacity per area: a binder-free carbon fiber cloth-sulfur material. , 2014, Chemical communications.

[36]  Kang Xu,et al.  Reversible S0 /MgSx Redox Chemistry in a MgTFSI2 /MgCl2 /DME Electrolyte for Rechargeable Mg/S Batteries. , 2017, Angewandte Chemie.

[37]  Qian Sun,et al.  Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition , 2017, Advanced materials.

[38]  Huakun Liu,et al.  Room‐Temperature Sodium‐Sulfur Batteries: A Comprehensive Review on Research Progress and Cell Chemistry , 2017 .

[39]  P. Adelhelm,et al.  Cell Concepts of Metal–Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications , 2017, Topics in Current Chemistry.

[40]  H. Althues,et al.  Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes. , 2014, Chemical communications.

[41]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[42]  Bingan Lu,et al.  Covalent sulfur for advanced room temperature sodium-sulfur batteries , 2016 .

[43]  A. Manthiram,et al.  A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium-Sulfur Batteries. , 2016, ACS nano.

[44]  Boyang Liu,et al.  Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. , 2017, Nano letters.

[45]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[46]  L. Nazar,et al.  A Nitrogen and Sulfur Dual‐Doped Carbon Derived from Polyrhodanine@Cellulose for Advanced Lithium–Sulfur Batteries , 2015, Advanced materials.

[47]  Eleanor I. Gillette,et al.  Enhancing the reversibility of Mg/S battery chemistry through Li(+) mediation. , 2015, Journal of the American Chemical Society.

[48]  Chong Seung Yoon,et al.  Toward High-Safety Potassium–Sulfur Batteries Using a Potassium Polysulfide Catholyte and Metal-Free Anode , 2018 .

[49]  S. Licht,et al.  Novel Aqueous Aluminum/Sulfur Batteries , 1993 .

[50]  M. G. Park,et al.  Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives , 2017, Advanced materials.

[51]  Jun Liu,et al.  A Low Cost, High Energy Density, and Long Cycle Life Potassium–Sulfur Battery for Grid‐Scale Energy Storage , 2015, Advanced materials.

[52]  Jou-Hyeon Ahn,et al.  A singular flexible cathode for room temperature sodium/sulfur battery , 2016 .

[53]  Feng Li,et al.  Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries , 2017, Nature Communications.

[54]  H. Althues,et al.  Hard Carbon Anodes and Novel Electrolytes for Long‐Cycle‐Life Room Temperature Sodium‐Sulfur Full Cell Batteries , 2016 .

[55]  Feng Li,et al.  Carbon materials for Li–S batteries: Functional evolution and performance improvement , 2016 .

[56]  M. Fichtner,et al.  Performance Improvement of Magnesium Sulfur Batteries with Modified Non‐Nucleophilic Electrolytes , 2015 .

[57]  Zongping Shao,et al.  Hierarchical Porous Yolk–Shell Carbon Nanosphere for High‐Performance Lithium–Sulfur Batteries , 2017 .

[58]  Xiulin Fan,et al.  High-Performance All-Inorganic Solid-State Sodium-Sulfur Battery. , 2017, ACS nano.

[59]  Kenville E. Hendrickson,et al.  Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites. , 2015, Journal of the American Chemical Society.

[60]  Anil V. Virkar,et al.  Resistivity‐Microstructure Relations in Lithia‐Stabilized Polycrystalline β”‐Alumina , 1978 .

[61]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[62]  Naixin Xu,et al.  A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries , 2002 .

[63]  M. Jaroniec,et al.  Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. , 2012, Angewandte Chemie.

[64]  W. Luo,et al.  Ultrathin Surface Coating Enables the Stable Sodium Metal Anode , 2017 .

[65]  Kai Zhang,et al.  Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries. , 2014, Inorganic chemistry.

[66]  Philipp Adelhelm,et al.  From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries , 2015, Beilstein journal of nanotechnology.

[67]  S. Jung,et al.  Flexible Few-Layered Graphene for the Ultrafast Rechargeable Aluminum-Ion Battery , 2016 .

[68]  Yi Zhang,et al.  Sulfur nanocomposite as a positive electrode material for rechargeable potassium-sulfur batteries. , 2018, Chemical communications.

[69]  A. Manthiram,et al.  Ambient‐Temperature Sodium–Sulfur Batteries with a Sodiated Nafion Membrane and a Carbon Nanofiber‐Activated Carbon Composite Electrode , 2015 .

[70]  Jun Lu,et al.  Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries , 2017, Proceedings of the National Academy of Sciences.

[71]  Ruopian Fang,et al.  3D Interconnected Electrode Materials with Ultrahigh Areal Sulfur Loading for Li–S Batteries , 2016, Advanced materials.

[72]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[73]  Yong Yang,et al.  Recent advances in the research of polyanion-type cathode materials for Li-ion batteries , 2011 .

[74]  Xiulin Fan,et al.  A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte. , 2016, Angewandte Chemie.

[75]  B. Nykvist,et al.  Rapidly falling costs of battery packs for electric vehicles , 2015 .

[76]  M. Jaroniec,et al.  Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. , 2012, Angewandte Chemie.

[77]  M. S. Rao,et al.  Fluorinated Natural Graphite Cathode for Rechargeable Ionic Liquid Based Aluminum–Ion Battery , 2013 .

[78]  M. Zitnik,et al.  Mechanistic Study of Magnesium–Sulfur Batteries , 2017 .

[79]  M. Winter,et al.  Influence of cations in lithium and magnesium polysulphide solutions: dependence of the solvent chemistry. , 2017, Physical chemistry chemical physics : PCCP.

[80]  Lei Wen,et al.  Engineering of lithium-metal anodes towards a safe and stable battery , 2018, Energy Storage Materials.

[81]  Zhiqiang Niu,et al.  Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries , 2017 .

[82]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[83]  Feng Li,et al.  On energy: Batteries beyond lithium ion , 2017 .

[84]  H. Nagata,et al.  An All-solid-state Sodium–Sulfur Battery Operating at Room Temperature Using a High-sulfur-content Positive Composite Electrode , 2014 .

[85]  B. Scrosati,et al.  Metal Alloy Electrode Configurations For Advanced Lithium‐Ion Batteries , 2009 .

[86]  Richard van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[87]  Rezan Demir‐Cakan,et al.  Investigation of the Effect of Using Al2O3–Nafion Barrier on Room-Temperature Na–S Batteries , 2017 .

[88]  G. Lu,et al.  Carbon-based catalyst support in fuel cell applications , 2012 .

[89]  Yitai Qian,et al.  Ultramicroporous Carbon through an Activation-Free Approach for Li-S and Na-S Batteries in Carbonate-Based Electrolyte. , 2017, ACS applied materials & interfaces.

[90]  Xuejun Zhou,et al.  High Rate Magnesium–Sulfur Battery with Improved Cyclability Based on Metal–Organic Framework Derivative Carbon Host , 2018, Advanced materials.

[91]  Feng Li,et al.  Carbon–sulfur composites for Li–S batteries: status and prospects , 2013 .

[92]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[93]  Taeeun Yim,et al.  Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries , 2013 .

[94]  J. Chai,et al.  A Delicately Designed Sulfide Graphdiyne Compatible Cathode for High-Performance Lithium/Magnesium-Sulfur Batteries. , 2017, Small.

[95]  Weidong He,et al.  Three-Dimensional Hierarchical Reduced Graphene Oxide/Tellurium Nanowires: A High-Performance Freestanding Cathode for Li-Te Batteries. , 2016, ACS nano.

[96]  J. Gerbec,et al.  A High Capacity Calcium Primary Cell Based on the Ca–S System , 2013 .

[97]  Yuegang Zhang,et al.  Synthesis, Crystal Structure, and Electrochemical Properties of a Simple Magnesium Electrolyte for Magnesium/Sulfur Batteries. , 2016, Angewandte Chemie.

[98]  Hongtao Qu,et al.  An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery , 2017 .

[99]  Mingzhe Chen,et al.  In Situ Grown S Nanosheets on Cu Foam: An Ultrahigh Electroactive Cathode for Room-Temperature Na-S Batteries. , 2017, ACS applied materials & interfaces.

[100]  S. Choudhury,et al.  Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes , 2017, Advanced materials.

[101]  A. Manthiram,et al.  Electrochemical Energy Storage with a Reversible Nonaqueous Room‐Temperature Aluminum–Sulfur Chemistry , 2017 .

[102]  Xiao Xing Liang,et al.  Improved cycling performances of lithium sulfur batteries with LiNO 3-modified electrolyte , 2011 .

[103]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[104]  Sebastian Wenzel,et al.  Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte , 2013 .

[105]  S. Qiao,et al.  Carbon materials and their energy conversion and storage applications , 2013 .

[106]  Jou-Hyeon Ahn,et al.  A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode , 2016 .

[107]  S. Qiao,et al.  Fe–N Decorated Hybrids of CNTs Grown on Hierarchically Porous Carbon for High‐Performance Oxygen Reduction , 2014, Advanced materials.

[108]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[109]  Burkhard König,et al.  Low melting mixtures in organic synthesis – an alternative to ionic liquids? , 2012 .

[110]  A. Manthiram,et al.  Performance Enhancement and Mechanistic Studies of Room-Temperature Sodium–Sulfur Batteries with a Carbon-Coated Functional Nafion Separator and a Na2S/Activated Carbon Nanofiber Cathode , 2016 .

[111]  S. Choudhury,et al.  A stable room-temperature sodium–sulfur battery , 2016, Nature Communications.

[112]  Jin-Woo Park,et al.  Sodium Polysulfides during Charge/Discharge of the Room-Temperature Na/S Battery Using TEGDME Electrolyte , 2016 .

[113]  Feng Li,et al.  3D Graphene‐Foam–Reduced‐Graphene‐Oxide Hybrid Nested Hierarchical Networks for High‐Performance Li–S Batteries , 2016, Advanced materials.

[114]  Arumugam Manthiram,et al.  Lithium–Sulfur Batteries: Progress and Prospects , 2015, Advanced materials.

[115]  Yayuan Liu,et al.  Mesoporous Metal–Organic Frameworks with Size‐, Shape‐, and Space‐Distribution‐Controlled Pore Structure , 2015, Advanced materials.

[116]  Feng Li,et al.  An Aluminum-Sulfur Battery with a Fast Kinetic Response. , 2018, Angewandte Chemie.

[117]  Ji‐Guang Zhang,et al.  Enabling room temperature sodium metal batteries , 2016 .

[118]  Nancy J. Dudney,et al.  Phosphorous Pentasulfide as a Novel Additive for High‐Performance Lithium‐Sulfur Batteries , 2013 .

[119]  Weimin Kang,et al.  A review on separators for lithiumsulfur battery: Progress and prospects , 2016 .

[120]  Dong Ju Lee,et al.  Alternative materials for sodium ion–sulphur batteries , 2013 .

[121]  Yong‐Mook Kang,et al.  Graphite-Nanoplate-Coated Bi2 S3 Composite with High-Volume Energy Density and Excellent Cycle Life for Room-Temperature Sodium-Sulfide Batteries. , 2016, Chemistry.

[122]  Jun-Sheng Qin,et al.  Recent advances in porous polyoxometalate-based metal-organic framework materials. , 2014, Chemical Society reviews.

[123]  Joseph S. Elias,et al.  Conductive MOF electrodes for stable supercapacitors with high areal capacitance. , 2017, Nature materials.

[124]  A. Manthiram,et al.  Room-Temperature Sodium–Sulfur Batteries with Liquid-Phase Sodium Polysulfide Catholytes and Binder-Free Multiwall Carbon Nanotube Fabric Electrodes , 2014 .

[125]  Hongkyung Lee,et al.  Enhancing the Cycling Stability of Sodium Metal Electrodes by Building an Inorganic-Organic Composite Protective Layer. , 2017, ACS applied materials & interfaces.

[126]  Xueping Gao,et al.  Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres , 2010 .

[127]  L. Archer,et al.  A novel non-aqueous aluminum sulfur battery , 2015 .

[128]  Arumugam Manthiram,et al.  Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge , 2015, Nature Communications.

[129]  Qian Sun,et al.  Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode. , 2017, Nano letters.

[130]  Jie Gao,et al.  Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies , 2011 .

[131]  Feng Wu,et al.  Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries , 2015 .

[132]  Lin Ma,et al.  Nanomaterials: Science and applications in the lithium–sulfur battery , 2015 .

[133]  Jiulin Wang,et al.  Room temperature Na/S batteries with sulfur composite cathode materials , 2007 .

[134]  Arumugam Manthiram,et al.  A strategic approach to recharging lithium-sulphur batteries for long cycle life , 2013, Nature Communications.

[135]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[136]  Feng Li,et al.  A Flexible Sulfur‐Graphene‐Polypropylene Separator Integrated Electrode for Advanced Li–S Batteries , 2015, Advanced materials.

[137]  Shengbo Zhang,et al.  Effect of Discharge Cutoff Voltage on Reversibility of Lithium/Sulfur Batteries with LiNO3-Contained Electrolyte , 2012 .

[138]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[139]  Jou-Hyeon Ahn,et al.  Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte , 2011 .

[140]  A. Hayashi,et al.  All-Solid-State Na/S Batteries with a Na3PS4 Electrolyte Operating at Room Temperature , 2017 .

[141]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[142]  Byung Gon Kim,et al.  One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature. , 2013, Nano letters.

[143]  J. Liang,et al.  Achieving a stable Na metal anode with a 3D carbon fibre scaffold , 2018 .

[144]  Guangmin Zhou,et al.  Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations , 2016 .

[145]  Chao Shi,et al.  A Sulfur‐Rich Copolymer@CNT Hybrid Cathode with Dual‐Confinement of Polysulfides for High‐Performance Lithium–Sulfur Batteries , 2017, Advanced materials.

[146]  Richard Van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[147]  Bryan D. Vogt,et al.  Ultra-long cycle life, low-cost room temperature sodium-sulfur batteries enabled by highly doped (N,S) nanoporous carbons , 2017 .

[148]  In-Tae Kim,et al.  Room temperature rechargeable magnesium batteries with sulfur-containing composite cathodes prepared from elemental sulfur and bis(alkenyl) compound having a cyclic or linear ether unit , 2015 .

[149]  M. Fichtner,et al.  Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte. , 2016, Nanoscale.

[150]  Yu Zhu,et al.  A nitrogen doped carbonized metal–organic framework for high stability room temperature sodium–sulfur batteries , 2016 .

[151]  Yuegang Zhang,et al.  Chemical routes toward long-lasting lithium/sulfur cells , 2016, Nano Research.

[152]  H. Ahn,et al.  The short-term cycling properties of Na/PVdF/S battery at ambient temperature , 2008 .

[153]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[154]  L. Archer,et al.  The rechargeable aluminum-ion battery. , 2011, Chemical communications.

[155]  Jou-Hyeon Ahn,et al.  Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte , 2007 .