Finite-time quantum entanglement in propagating squeezed microwaves

Two-mode squeezing is a fascinating example of quantum entanglement manifested in cross-correlations of non-commuting observables between two subsystems. At the same time, these subsystems themselves may contain no quantum signatures in their self-correlations. These properties make two-mode squeezed (TMS) states an ideal resource for applications in quantum communication. Here, we generate propagating microwave TMS states by a beam splitter distributing single mode squeezing emitted from distinct Josephson parametric amplifiers along two output paths. We experimentally study the fundamental dephasing process of quantum cross-correlations in continuous-variable propagating TMS microwave states and accurately describe it with a theory model. In this way, we gain the insight into finite-time entanglement limits and predict high fidelities for benchmark quantum communication protocols such as remote state preparation and quantum teleportation.

[1]  M. Devoret,et al.  Generating entangled microwave radiation over two transmission lines. , 2012, Physical review letters.

[2]  S. Lloyd,et al.  Power of one qumode for quantum computation , 2015, 1510.04758.

[3]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[4]  Seth Lloyd,et al.  Quantum Computation over Continuous Variables , 1999 .

[5]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[6]  Barrington. Moore The Outlook , 1956 .

[7]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[8]  E Knill,et al.  Quantum state tomography of an itinerant squeezed microwave field. , 2010, Physical review letters.

[9]  E. Solano,et al.  Dual-path methods for propagating quantum microwaves , 2013, 1308.3117.

[10]  Zheshen Zhang,et al.  Entanglement-enhanced sensing in a lossy and noisy environment. , 2014, Physical review letters.

[11]  Christian Weedbrook,et al.  Continuous-variable quantum computing on encrypted data , 2016, Nature Communications.

[12]  E Solano,et al.  Quantum Estimation Methods for Quantum Illumination. , 2016, Physical review letters.

[13]  F. Illuminati,et al.  Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states , 2005, quant-ph/0506124.

[14]  S. Filipp,et al.  Observation of two-mode squeezing in the microwave frequency domain. , 2011, Physical review letters.

[15]  E. Solano,et al.  Quantum teleportation of propagating quantum microwaves , 2015, 1506.06701.

[16]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[17]  T. Ralph,et al.  Measuring photon antibunching from continuous variable sideband squeezing. , 2006, Physical review letters.

[18]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[19]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[20]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[21]  Saikat Guha,et al.  Microwave quantum illumination. , 2015, Physical review letters.

[22]  G. C. Hilton,et al.  Generating and verifying entangled itinerant microwave fields with efficient and independent measurements , 2015 .

[23]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[24]  Radim Filip,et al.  Continuous variable quantum key distribution with modulated entangled states , 2011, Nature Communications.

[25]  A. Marx,et al.  Photon Statistics of Propagating Thermal Microwaves. , 2016, Physical review letters.

[26]  M. Mariantoni,et al.  Dual-path state reconstruction scheme for propagating quantum microwaves and detector noise tomography. , 2010, Physical review letters.

[27]  T Yamamoto,et al.  Displacement of Propagating Squeezed Microwave States. , 2016, Physical review letters.

[28]  E. Solano,et al.  Path entanglement of continuous-variable quantum microwaves. , 2012, Physical review letters.

[29]  E. Solano,et al.  Squeezing with a flux-driven Josephson parametric amplifier , 2013, 1307.7285.

[30]  E Solano,et al.  Quantum illumination reveals phase-shift inducing cloaking , 2017, Scientific Reports.

[31]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[32]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.