High-Precision Eigenvalue Bound for the Laplacian with Singularities

For the purpose of bounding eigenvalues of the Laplacian over a bounded polygonal domain, we propose an algorithm to give high-precision bound even in the case that the eigenfunction has singularities around reentrant corners. The algorithm is a combination of the finite element method and the Lehmann–Goerisch theorem. The interval arithmetic is adopted in floating point number computation. Since all the error in the computation, e.g., the function approximation error, the floating point number rounding error, are exactly estimated, the result can be mathematically correct. In the end of the chapter, there are computational examples over an L-shaped domain and a square-minus-square domain that demonstrate the efficiency of our proposed algorithm.

[1]  N. Lehmann Optimale Eigenwerteinschließungen , 1963 .

[2]  E. Wagner International Series of Numerical Mathematics , 1963 .

[3]  J. C. Mason,et al.  Chebyshev Polynomial Approximations for the L-Membrane Eigenvalue Problem , 1967 .

[4]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[5]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[6]  F. Goerisch Ein Stufenverfahren zur Berechnung von Eigenwertschranken , 1987 .

[7]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications , 1990 .

[8]  Christian P. Ullrich,et al.  Computer Arithmetic and Self-Validating Numerical Methods , 1990, Notes and reports in mathematics in science and engineering.

[9]  Friedrich Goerisch,et al.  The Determination of Guaranteed Bounds to Eigenvalues with the Use of Variational Methods I , 1990, Computer Arithmetic and Self-Validating Numerical Methods.

[10]  Michael Plum,et al.  Eigenvalue inclusions for second-order ordinary differential operators by a numerical homotopy method , 1990 .

[11]  Michael Plum Bounds for eigenvalues of second-order elliptic differential operators , 1991 .

[12]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[13]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[14]  T. Csendes Developments in Reliable Computing , 2000 .

[15]  M. Plum,et al.  New solutions of the Gelfand problem , 2002 .

[16]  Georg J. Still,et al.  Approximation theory methods for solving elliptic eigenvalue problems , 2003 .

[17]  Henning Behnke,et al.  The calculation of guaranteed bounds for eigenvalues using complementary variational principles , 1991, Computing.

[18]  Quan Yuan,et al.  Bounds to eigenvalues of the Laplacian on L-shaped domain by variational methods , 2009, J. Comput. Appl. Math..

[19]  Fumio Kikuchi,et al.  Analysis and Estimation of Error Constants for P0 and P1 Interpolations over Triangular Finite Elements , 2010 .

[20]  Chin-Yun Chen,et al.  On the properties of Sard kernels and multiple error estimates for bounded linear functionals of bivariate functions with application to non-product cubature , 2012, Numerische Mathematik.

[21]  Xuefeng Liu,et al.  Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..