High-Precision Eigenvalue Bound for the Laplacian with Singularities
暂无分享,去创建一个
[1] N. Lehmann. Optimale Eigenwerteinschließungen , 1963 .
[2] E. Wagner. International Series of Numerical Mathematics , 1963 .
[3] J. C. Mason,et al. Chebyshev Polynomial Approximations for the L-Membrane Eigenvalue Problem , 1967 .
[4] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[5] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[6] F. Goerisch. Ein Stufenverfahren zur Berechnung von Eigenwertschranken , 1987 .
[7] Jacques-Louis Lions,et al. Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications , 1990 .
[8] Christian P. Ullrich,et al. Computer Arithmetic and Self-Validating Numerical Methods , 1990, Notes and reports in mathematics in science and engineering.
[9] Friedrich Goerisch,et al. The Determination of Guaranteed Bounds to Eigenvalues with the Use of Variational Methods I , 1990, Computer Arithmetic and Self-Validating Numerical Methods.
[10] Michael Plum,et al. Eigenvalue inclusions for second-order ordinary differential operators by a numerical homotopy method , 1990 .
[11] Michael Plum. Bounds for eigenvalues of second-order elliptic differential operators , 1991 .
[12] Josef Hoschek,et al. Fundamentals of computer aided geometric design , 1996 .
[13] Siegfried M. Rump,et al. INTLAB - INTerval LABoratory , 1998, SCAN.
[14] T. Csendes. Developments in Reliable Computing , 2000 .
[15] M. Plum,et al. New solutions of the Gelfand problem , 2002 .
[16] Georg J. Still,et al. Approximation theory methods for solving elliptic eigenvalue problems , 2003 .
[17] Henning Behnke,et al. The calculation of guaranteed bounds for eigenvalues using complementary variational principles , 1991, Computing.
[18] Quan Yuan,et al. Bounds to eigenvalues of the Laplacian on L-shaped domain by variational methods , 2009, J. Comput. Appl. Math..
[19] Fumio Kikuchi,et al. Analysis and Estimation of Error Constants for P0 and P1 Interpolations over Triangular Finite Elements , 2010 .
[20] Chin-Yun Chen,et al. On the properties of Sard kernels and multiple error estimates for bounded linear functionals of bivariate functions with application to non-product cubature , 2012, Numerische Mathematik.
[21] Xuefeng Liu,et al. Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..