IS STRONG SASI ACTIVITY THE KEY TO SUCCESSFUL NEUTRINO-DRIVEN SUPERNOVA EXPLOSIONS?

Following a simulation approach of recent publications, we explore the viability of the neutrino-heating explosion mechanism's dependence on the spatial dimension. Our results disagree with previous findings. While we also observe that two-dimensional (2D) models explode for lower driving neutrino luminosity than spherically symmetric (1D) models, we do not find that explosions in 3D occur easier and earlier than in 2D. Moreover, we find that the average entropy of matter in the gain layer hardly depends on the dimension and thus is not a good diagnostic quantity for the readiness to explode. Instead, mass, integrated entropy, total neutrino-heating rate, and non-radial kinetic energy in the gain layer are higher when models are closer to explosion. Coherent, large-scale mass motions as typically associated with the standing accretion-shock instability (SASI) are observed to be supportive for explosions because they drive strong shock expansion and thus enlarge the gain layer. While 2D models with better angular resolution clearly explode more easily, the opposite trend is seen in 3D. We interpret this as a consequence of the turbulent energy cascade, which transports energy from small to large spatial scales in 2D, thus fostering SASI activity. In contrast, the energy flow in 3D is in the opposite direction, feeding fragmentation and vortex motions on smaller scales and thus making the 3D evolution with finer grid resolution more similar to 1D. More favorable conditions for explosions in 3D may therefore be tightly linked to efficient growth of low-order SASI modes including nonaxisymmetric ones.

[1]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[2]  E. Endeve,et al.  TURBULENT MAGNETIC FIELD AMPLIFICATION FROM SPIRAL SASI MODES: IMPLICATIONS FOR CORE-COLLAPSE SUPERNOVAE AND PROTO-NEUTRON STAR MAGNETIZATION , 2012, 1203.3108.

[3]  R. Fern'andez HYDRODYNAMICS OF CORE-COLLAPSE SUPERNOVAE AT THE TRANSITION TO EXPLOSION. I. SPHERICAL SYMMETRY , 2011, 1111.0665.

[4]  K. Kotake,et al.  THREE-DIMENSIONAL HYDRODYNAMIC CORE-COLLAPSE SUPERNOVA SIMULATIONS FOR AN 11.2 M☉ STAR WITH SPECTRAL NEUTRINO TRANSPORT , 2011, 1108.3989.

[5]  T. Thompson,et al.  THE PHYSICS OF THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVAE , 2011, 1103.4864.

[6]  W. Arnett,et al.  TOWARD REALISTIC PROGENITORS OF CORE-COLLAPSE SUPERNOVAE , 2011, 1101.5646.

[7]  A. Burrows,et al.  DIMENSION AS A KEY TO THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVA EXPLOSIONS , 2010, 1006.3792.

[8]  L. H. Howell,et al.  CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. I. HYDRODYNAMICS AND SELF-GRAVITY , 2010, 1005.0114.

[9]  R. Fern'andez THE SPIRAL MODES OF THE STANDING ACCRETION SHOCK INSTABILITY , 2010, 1003.1730.

[10]  K. Kotake,et al.  Explosion Geometry of a Rotating 13 $\ M_{\odot}$ Star Driven by the SASI-Aided Neutrino-Heating Supernova Mechanism , 2009, 0912.1157.

[11]  C. Ott,et al.  A MODEL FOR GRAVITATIONAL WAVE EMISSION FROM NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVAE , 2009, 0907.4762.

[12]  O. E. Bronson Messer,et al.  Mechanisms of Core‐Collapse Supernovae & Simulation Results from the CHIMERA Code , 2009, 1002.4909.

[13]  R. Fern'andez,et al.  STABILITY OF A SPHERICAL ACCRETION SHOCK WITH NUCLEAR DISSOCIATION , 2008, 0811.2795.

[14]  K. Kotake,et al.  EFFECTS OF ROTATION ON STANDING ACCRETION SHOCK INSTABILITY IN NONLINEAR PHASE FOR CORE-COLLAPSE SUPERNOVAE , 2008, 0811.0651.

[15]  J. Sato,et al.  A SIMPLE TOY MODEL OF THE ADVECTIVE–ACOUSTIC INSTABILITY. II. NUMERICAL SIMULATIONS , 2008, 0809.2303.

[16]  A. Burrows,et al.  Criteria for Core-Collapse Supernova Explosions by the Neutrino Mechanism , 2008, 0805.3345.

[17]  T. Foglizzo,et al.  Effect of Rotation on the Stability of a Stalled Cylindrical Shock and Its Consequences for Core-Collapse Supernovae , 2007, 0710.3041.

[18]  K. Kotake,et al.  Three-Dimensional Simulations of Standing Accretion Shock Instability in Core-Collapse Supernovae , 2007, 0710.2191.

[19]  A. Marek,et al.  DELAYED NEUTRINO-DRIVEN SUPERNOVA EXPLOSIONS AIDED BY THE STANDING ACCRETION-SHOCK INSTABILITY , 2007, 0708.3372.

[20]  CEA-Saclay,et al.  Multidimensional supernova simulations with approximative neutrino transport. II. Convection and the , 2007, 0704.3001.

[21]  A. Mezzacappa,et al.  Pulsar spins from an instability in the accretion shock of supernovae , 2006, Nature.

[22]  C. Ott,et al.  Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions , 2006, astro-ph/0610175.

[23]  L. Scheck,et al.  Instability of a Stalled Accretion Shock: Evidence for the Advective-Acoustic Cycle , 2006, astro-ph/0606640.

[24]  S. Yamada,et al.  Standing Accretion Shocks in the Supernova Core: Effects of Convection and Realistic Equations of State , 2006, astro-ph/0606504.

[25]  E. Müller,et al.  Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions , 2006, astro-ph/0601302.

[26]  M. Rampp,et al.  Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport II. Models for different progenitor stars , 2005, astro-ph/0512189.

[27]  K. Kotake,et al.  Numerical Analysis of Standing Accretion Shock Instability with Neutrino Heating in Supernova Cores , 2005, astro-ph/0509765.

[28]  L. Scheck,et al.  Neutrino-driven Convection versus Advection in Core-Collapse Supernovae , 2005, astro-ph/0507636.

[29]  A. Mezzacappa,et al.  The Spherical Accretion Shock Instability in the Linear Regime , 2005, astro-ph/0507181.

[30]  M. Rampp,et al.  Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport - I. Numerical method and results for a 15 solar mass star , 2005, astro-ph/0507135.

[31]  M. Liebendörfer,et al.  A Simple Parameterization of the Consequences of Deleptonization for Simulations of Stellar Core Collapse , 2005, astro-ph/0504072.

[32]  S. Yamada,et al.  Effects of Rotation on the Revival of a Stalled Shock in Supernova Explosions , 2004, astro-ph/0412625.

[33]  A. Burrows,et al.  Two-dimensional, Time-dependent, Multigroup, Multiangle Radiation Hydrodynamics Test Simulation in the Core-Collapse Supernova Context , 2003, astro-ph/0312633.

[34]  H. Janka,et al.  Electron capture rates on nuclei and implications for stellar core collapse. , 2003, Physical review letters.

[35]  A. Mezzacappa,et al.  Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae , 2002, astro-ph/0210634.

[36]  H. Janka,et al.  Radiation hydrodynamics with neutrinos - Variable Eddington factor method for core-collapse supernova simulations , 2002, astro-ph/0203101.

[37]  R. Diehl,et al.  Astronomy with Radioactivities , 2012, Publications of the Astronomical Society of Australia.

[38]  H. Janka Conditions for shock revival by neutrino heating in core-collapse supernovae , 2000, astro-ph/0008432.

[39]  Hong Shen,et al.  Relativistic equation of state of nuclear matter for supernova and neutron star , 1998 .

[40]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[41]  A. Burrows,et al.  On the nature of core-collapse supernova explosions , 1995, astro-ph/9506061.

[42]  W. Benz,et al.  Inside the Supernova: A Powerful Convective Engine , 1994, astro-ph/9404024.

[43]  J. Quirk A Contribution to the Great Riemann Solver Debate , 1994 .

[44]  A. Burrows,et al.  A Theory of Supernova Explosions , 1993 .

[45]  B. Fryxell,et al.  Instabilities and clumping in SN 1987A. I, Early evolution in two dimensions , 1991 .

[46]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[47]  Phillip Colella,et al.  Efficient Solution Algorithms for the Riemann Problem for Real Gases , 1985 .

[48]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[49]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[50]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[51]  Accepted to Ap.J. Preprint typeset using L ATEX style emulateapj v. 6/22/04 A NEW MECHANISM FOR CORE-COLLAPSE SUPERNOVA EXPLOSIONS , 2005 .

[52]  S. Woosley,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.