Exploitation of the Fiber Capacity in Optically Amplified Transmission Systems

Abstract As is well known, single-mode optical fibers have a huge optical bandwidth but the exploitation of this optical ether for optical transmission systems is limited by several degrading effects that are present both in the fiber and in other devices composing the link. However, in recent years several techniques have been proposed and tested to show how the system capacity can approach total exploitation of the fiber bandwidth. In this work we survey the main optically amplified communication systems that have been proposed to achieve very-high-capacity transmission and analyze their performances by means of numerical simulations. Numerical simulation is a fundamental tool for the study of optical communication because analytical theories are not able to take into consideration all the effects that are simultaneously present in a real link. The study reports a comparison among the performance of digital intensity modulation systems with direct detection considering both the non-return-to-zero and the return-to-zero (soliton) format, as well as the time and wavelength division multiplexing techniques. The results show how exploitation of the Kerr nonlinearity, use of the in-line filtering process, and introduction of dispersion management are the best means to limit the degrading effects of chromatic dispersion and ASE noise.

[1]  H. H. Chen,et al.  Stability of solitons in randomly varying birefringent fibers. , 1991, Optics letters.

[2]  D. Cotter,et al.  Stimulated Brillouin Scattering in Monomode Optical Fiber , 1983 .

[3]  E. Yamada,et al.  NUMERICAL AND EXPERIMENTAL COMPARISON OF SOLITON, RZ PULSE AND NRZ PULSES UNDER TWO-STEP DISPERSION ALLOCATION , 1997 .

[4]  Shigeru Kuwano,et al.  10 Gbit/s x 10 channel transmission experiment over 600km with 100km repeater spacing employing cascaded fluoride-based erbium doped fibre amplifiers , 1995 .

[5]  F. Ouellette,et al.  All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling , 1994 .

[6]  Nori Shibata,et al.  Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber , 1987 .

[7]  Amnon Yariv,et al.  Spontaneous and stimulated Raman scattering in long low loss fibers , 1978 .

[8]  A. Chraplyvy Limitations on lightwave communications imposed by optical-fiber nonlinearities , 1990 .

[9]  F. Favre,et al.  20 Gbit/s soliton transmission over 19 Mm using sliding-frequency guiding filters , 1995 .

[10]  N. S. Bergano,et al.  Polarization multiplexing with solitons , 1992 .

[11]  S. F. Carter,et al.  Constraints on the Design of Long-Haul Soliton Systems, , 1992 .

[12]  C. Menyuk Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes , 1988 .

[13]  C R Menyuk,et al.  Dispersion-managed solitons in a fiber loop with in-line filtering. , 1997, Optics letters.

[14]  Nonlinear compensation of chromatic dispersion for phase- and intensity-modulated signals in the presence of amplified spontaneous emission noise. , 1994, Optics letters.

[15]  J. Gordon,et al.  The sliding-frequency guiding filter: an improved form of soliton jitter control. , 1992, Optics letters.

[16]  S. Johansson Transport network involving a reconfigurable WDM network layer-a European demonstration , 1996 .

[17]  Eiichi Yamada,et al.  60 Gbit/s WDM (20 Gbit/s/spl times/3 unequally spaced channels) soliton transmission over 10000 km using in-line synchronous modulation and optical filtering , 1996 .

[18]  5200km straight-line soliton transmission experiment at 10Gbits/s , 1995 .

[19]  S Wabnitz,et al.  Analysis of soliton stability and interactions with sliding filters. , 1994, Optics letters.

[20]  A. Hasegawa,et al.  Generation of asymptotically stable optical solitons and suppression of the Gordon-Haus effect. , 1992, Optics letters.

[21]  A. Gnauck,et al.  Dispersion-compensated 333-km 10-Gb/s transmission using mid-span spectral inversion in an injection-locked InGaAsP V-groove laser , 1994, IEEE Photonics Technology Letters.

[22]  H. Haus,et al.  Soliton transmission control. , 1991, Optics letters.

[23]  Benedetto Daino,et al.  Investigation on the implementation of high capacity optically amplified systems in links up to 4000 km long , 1995 .

[24]  George I. Stegeman,et al.  Anisotropic and Nonlinear Optical Waveguides , 1992 .

[25]  Hidenori Taga,et al.  Long distance transmission experiments using the WDM technology , 1996 .

[26]  M. Saruwatari,et al.  40 Gbit/s optical soliton transmission over 65 km , 1992 .

[27]  Ulf Peschel,et al.  10 Gbit/s signal transmission over 550 km in standard fibre at 1300 nm using semiconductor optical amplifiers , 1997 .

[28]  Richard E. Wagner,et al.  MONET: multiwavelength optical networking , 1996 .

[29]  F. M. Knox,et al.  10-Gbt/s soliton communication systems over standard fiber at 1.55 /spl mu/m and the use of dispersion compensation , 1995 .

[30]  Francesco Matera,et al.  Comparison of the performance of optical systems in fiber links 4000 km long , 1995 .

[31]  Demonstration of soliton transmission at 10 Gbit/s up to 27 Mm using “signal frequency sliding” technique , 1995 .

[32]  J. Gordon,et al.  Wavelength division multiplexing with solitons in ultra-long distance transmission using lumped amplifiers , 1990 .

[33]  R. M. Derosier,et al.  1420-km transmission of sixteen 2.5-Gb/s channels using silica-fiber-based EDFA repeaters , 1994, IEEE Photonics Technology Letters.

[34]  S. G. Evangelides,et al.  Reduction of the nonlinear impairment in ultralong lightwave systems by tailoring the fibre dispersion , 1994 .

[35]  Influence of chromatic dispersion variation along the path of soliton jitter control with sliding filters. , 1995, Optics letters.

[36]  M. Nakazawa,et al.  Optical soliton communication in a positively and negatively dispersion-allocated optical fibre transmission line , 1995 .

[37]  M. Kawachi,et al.  160 Gbit/s soliton data transmission over 200 km , 1995 .

[38]  F Matera,et al.  Compensation of polarization mode dispersion by means of the Kerr effect for nonreturn-to-zero signals. , 1995, Optics letters.

[39]  N. Suzuki,et al.  Simultaneous compensation of laser chirp, Kerr effect, and dispersion in 10-Gb/s long-haul transmission systems , 1993 .

[40]  N. Edagawa,et al.  IM-DD long-distance multichannel WDM transmission experiments using Er-doped fiber amplifiers , 1994 .

[41]  A. Mecozzi,et al.  Performance evaluation of very long span direct detection intensity and polarization modulated systems , 1996 .

[42]  Benedetto Daino,et al.  Statistical treatment of the evolution of the principal states of polarization in single-mode fibers , 1990 .

[43]  E. Desurvire,et al.  Wavelength-multiplexed transoceanic soliton systems: comparison of step-wise exponential dispersion-management techniques , 1997 .

[44]  E. Yamada,et al.  Infinite-distance soliton transmission with soliton controls in time and frequency domains , 1992 .

[45]  M. Stern,et al.  Grating compensation of third-order fiber dispersion , 1992 .

[46]  S. Wabnitz,et al.  Periodic Dispersion Compensation of Soliton Wavelength Division Multiplexed Transmissions with Sliding Filters , 1997 .

[47]  F. Favre,et al.  Robustness of 20 Gbit/s 63 km span 6 Mm sliding-filter controlled soliton transmission , 1995 .

[48]  N. S. Bergano,et al.  10 Gbit/s WDM transmission measurements on an installed optical amplifier undersea cable system , 1995 .

[50]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[51]  Thomas L Koch,et al.  Dispersion compensation by active predistorted signal synthesis , 1985 .

[52]  Francesco Matera,et al.  Performance of optically amplified dispersion-compensated links: reduction of the time jitter for return to zero signals , 1997 .

[53]  J. Gordon,et al.  Effects of fiber nonlinearities and amplifier spacing on ultra-long distance transmission , 1991 .

[54]  R. E. Wagner,et al.  Phenomenological approach to polarisation dispersion in long single-mode fibres , 1986 .

[55]  A. Mecozzi,et al.  Light depolarization owing to amplified spontaneous emission and Kerr nonlinearity in long-haul fiber links close to zero dispersion. , 1995, Optics letters.

[56]  M. Matsumoto,et al.  Theory of stretched-pulse transmission in dispersion-managed fibers. , 1997, Optics letters.

[57]  J. A. Lyle,et al.  Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference , 1994 .

[58]  H.A. Haus,et al.  Stretched-pulse optical fiber communications , 1997, IEEE Photonics Technology Letters.

[59]  N. S. Bergano Wavelength Division Multiplexing in Long-Haul Transmission Systems , 1996 .

[60]  C. Menyuk,et al.  Timing-jitter reduction for a dispersion-managed soliton system: experimental evidence. , 1997, Optics letters.

[61]  M. Nakazawa,et al.  40 Gbit/s WDM (10 Gbit/s/spl times/4 unequally spaced channels) soliton transmission over 10000 km using synchronous modulation and narrow band optical filtering , 1996 .

[62]  N. S. Bergano,et al.  Margin measurements in optical amplifier system , 1993, IEEE Photonics Technology Letters.

[63]  H. Haus,et al.  Random walk of coherently amplified solitons in optical fiber transmission. , 1986, Optics letters.

[64]  D. Simeonidou,et al.  3711 km, 4/spl times/2.5 Gbit/s WDM transmission over installed RIOJA submarine cable system , 1995 .

[65]  N. J. Smith,et al.  Enhanced power solitons in optical fibres with periodic dispersion management , 1996 .

[66]  C. Angelis,et al.  Time evolution of polarization mode dispersion in long terrestrial links , 1992 .

[67]  L. Mollenauer,et al.  Measurement of timing jitter in filter-guided soliton transmission at 10 Gbits/s and achievement of 375 Gbits/s-Mm, error free, at 12.5 and 15 Gbits/s. , 1994, Optics letters.

[68]  N. Olsson,et al.  Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers , 1989 .

[69]  Bandwidth limits of soliton transmission with sliding filters , 1994 .

[70]  D. Marcuse Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion , 1991 .

[71]  J. Gordon Interaction forces among solitons in optical fibers. , 1983, Optics letters.

[73]  Gee-Kung Chang,et al.  Multiwavelength reconfigurable WDM/ATM/SONET network testbed , 1996 .

[74]  C R Menyuk,et al.  Polarization decorrelation in optical fibers with randomly varying birefringence. , 1994, Optics letters.

[75]  S. Turitsyn,et al.  Cascaded optical communication systems with in-line semiconductor optical amplifiers , 1997 .

[76]  Antonio Mecozzi Long-distance transmission at zero dispersion: combined effect of the Kerr nonlinearity and the noise of the in-line amplifiers , 1994 .

[77]  Francesco Matera,et al.  Reduction of amplified spontaneous emission noise impact on optically amplified systems in normal dispersion region of fibre , 1997 .

[78]  N. Edagawa,et al.  Feasibility demonstration of 20 Gbit/s single channel soliton transmission over 11500 km using alternating-amplitude solitons , 1994 .

[79]  Francesco Matera,et al.  Nonlinear evolution of ASK and PSK signals in repeaterless fibre links , 1992 .

[80]  E. Lichtman Limitations imposed by polarization-dependent gain and loss on all-optical ultralong communication systems , 1995 .

[81]  P. Emplit,et al.  Limitations in long haul IM/DD optical fibre systems caused by chromatic dispersion and nonlinear Kerr effect , 1990 .

[82]  A Mecozzi,et al.  Timing jitter in soliton transmission with sliding filters. , 1996, Optics letters.

[84]  T. Montalant,et al.  Soliton transmission at 10 Gbit/s with a 70 km amplifier span over one million kilometres , 1994 .

[85]  H A Haus,et al.  Effect of filters on soliton interactions in wavelength-division-multiplexing systems. , 1992, Optics letters.

[86]  T. Imai,et al.  Automatic compensation technique for timewise fluctuating polarisation mode dispersion in in-line amplifier systems , 1994 .

[87]  Marina Settembre,et al.  Comparison of the performance of optically amplified transmission systems , 1996 .

[88]  L. Mollenauer,et al.  Pseudo-phase-matched four-wave mixing in soliton wavelength-division multiplexing transmission. , 1996, Optics letters.

[89]  広 久保田,et al.  Principle of Optics , 1960 .

[90]  Kenro Sekine,et al.  10 Gbit/s dispersion-compensated transmission over 2245 km conventional fibres in a recirculating loop , 1995 .

[91]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[92]  A. Chraplyvy,et al.  Systems impact of fiber nonlinearities , 1994 .

[93]  Réal Tremblay,et al.  RMS width of pulses in nonlinear dispersive fibers: pulses of arbitrary initial form with chirp , 1995 .

[94]  L. D. Tzeng,et al.  2.488 Gb/s-318 km repeaterless transmission using erbium-doped fiber amplifiers in a direct-detection system , 1992, IEEE Photonics Technology Letters.

[95]  Richard E. Wagner,et al.  Chromatic dispersion limitations in coherent lightwave transmission systems , 1988 .

[96]  Mitsunori Fukutoku,et al.  128 channel, 480 km FSK-DD transmission experiment using 0.98 mu m pumped erbium-doped fibre amplifiers and a tunable gain equaliser , 1994 .

[97]  Sergei K. Turitsyn,et al.  Full length article Optical pulse dynamics in fiber links with dispersion compensation , 1997 .

[98]  E. Yamada,et al.  10 Gbit/s soliton data transmission over one million kilometres , 1991 .

[99]  A. Chraplyvy,et al.  WDM systems with unequally spaced channels , 1995 .

[100]  F. Matera,et al.  10 Gbits−1 optically amplified single-channel systems operating in links encompassing conventional step-index fibres , 1997 .

[101]  Naoya Henmi,et al.  Prechirp technique as a linear dispersion compensation for ultrahigh-speed long-span intensity modulation directed detection optical communication systems , 1994 .

[102]  J. Bibb Cain,et al.  Error-Correction Coding for Digital Communications , 1981 .

[103]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .