Noisy Image Decomposition: A New Structure, Texture and Noise Model Based on Local Adaptivity

Abstract These last few years, image decomposition algorithms have been proposed to split an image into two parts: the structures and the textures. These algorithms are not adapted to the case of noisy images because the textures are corrupted by noise. In this paper, we propose a new model which decomposes an image into three parts (structures, textures and noise) based on a local regularization scheme. We compare our results with the recent work of Aujol and Chambolle. We finish by giving another model which combines the advantages of the two previous ones.

[1]  Yehoshua Y. Zeevi,et al.  Estimation of optimal PDE-based denoising in the SNR sense , 2006, IEEE Transactions on Image Processing.

[2]  Y. Meyer Oscillating Patterns in Some Nonlinear Evolution Equations , 2006 .

[3]  N. Sochen,et al.  Texture Preserving Variational Denoising Using an Adaptive Fidelity Term , 2003 .

[4]  Y. Meyer,et al.  Variational methods in image processing , 2004 .

[5]  A. Haddad Méthodes variationnelles en traitement d'image , 2005 .

[6]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[7]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[8]  Jérôme Gilles Décomposition et détection de structures géométriques en imagerie , 2006 .

[9]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[10]  Luminita A. Vese,et al.  Image Decomposition Using Total Variation and div(BMO) , 2005, Multiscale Model. Simul..

[11]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[12]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[13]  Jean-François Aujol Contribution à l'analyse de textures en traitement d'images par méthodes variationnelles et équations aux dérivées partielles , 2004 .

[14]  Stanley Osher,et al.  Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..

[15]  Yehoshua Y. Zeevi,et al.  Variational denoising of partly textured images by spatially varying constraints , 2006, IEEE Transactions on Image Processing.

[16]  A. Chambolle Practical, Unified, Motion and Missing Data Treatment in Degraded Video , 2004, Journal of Mathematical Imaging and Vision.

[17]  Y. Meyer,et al.  Image decompositions using bounded variation and generalized homogeneous Besov spaces , 2007 .

[18]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[19]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[20]  Antonin Chambolle,et al.  Image Decomposition Application to SAR Images , 2003, Scale-Space.