Crystallographic observation of 'induced fit' in a cryptophane host–guest model system

[1]  D. Cavagnat,et al.  Induced chiroptical changes of a water-soluble cryptophane by encapsulation of guest molecules and counterion effects. , 2010, Chemistry.

[2]  V. Bajaj,et al.  A xenon-based molecular sensor assembled on an MS2 viral capsid scaffold. , 2010, Journal of the American Chemical Society.

[3]  I. Dmochowski,et al.  Functionalized 129Xe contrast agents for magnetic resonance imaging. , 2010, Current opinion in chemical biology.

[4]  H. Desvaux,et al.  Biosensing using laser-polarized xenon NMR/MRI , 2009 .

[5]  G. Ercolani,et al.  Squaring cooperative binding circles , 2009, Proceedings of the National Academy of Sciences.

[6]  Michael D. Pluth,et al.  Encapsulation and characterization of proton-bound amine homodimers in a water-soluble, self-assembled supramolecular host , 2009, Proceedings of the National Academy of Sciences.

[7]  B. Feringa From molecules to molecular systems , 2009 .

[8]  T. Troxler,et al.  Substituent effects on xenon binding affinity and solution behavior of water-soluble cryptophanes. , 2009, Journal of the American Chemical Society.

[9]  D. Christianson,et al.  Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase. , 2009, Journal of the American Chemical Society.

[10]  I. Dmochowski,et al.  Peptide-mediated cellular uptake of cryptophane. , 2008, Bioconjugate chemistry.

[11]  D. Cavagnat,et al.  Conformational changes in cryptophane having C1-symmetry studied by vibrational circular dichroism. , 2008, The journal of physical chemistry. A.

[12]  Y. Ko,et al.  Water soluble cucurbit[6]uril derivative as a potential Xe carrier for 129Xe NMR-based biosensors. , 2008, Chemical communications.

[13]  D. Christianson,et al.  Structure of a 129Xe-cryptophane biosensor complexed with human carbonic anhydrase II. , 2008, Journal of the American Chemical Society.

[14]  J. Dutasta,et al.  A cryptophane core optimized for xenon encapsulation. , 2007, Journal of the American Chemical Society.

[15]  R. Eckenhoff,et al.  Thermodynamics of xenon binding to cryptophane in water and human plasma. , 2007, Journal of the American Chemical Society.

[16]  L. Dubois,et al.  Water soluble cryptophanes showing unprecedented affinity for xenon: candidates as NMR-based biosensors. , 2006, Journal of the American Chemical Society.

[17]  J. Dutasta,et al.  Vibrational circular dichroism study of optically pure cryptophane-A. , 2006, Journal of the American Chemical Society.

[18]  Z. Fan,et al.  Encapsulation of quinine by beta-cyclodextrin: excellent model for mimicking enzyme-substrate interactions. , 2006, The Journal of organic chemistry.

[19]  L. Dubois,et al.  NMR study of optically active monosubstituted cryptophanes and their interaction with xenon , 2004 .

[20]  Scott T. Mough,et al.  Isolation and structure of an "imploded" cryptophane. , 2004, Angewandte Chemie.

[21]  J. Dutasta,et al.  Raman microspectrometry as a new approach to the investigation of molecular recognition in solids: Chloroform-cryptophane complexes , 2004 .

[22]  J. Dutasta,et al.  Synthesis and application of cryptophanol hosts: 129Xe NMR spectroscopy of a deuterium-labeled (Xe)2@bis-cryptophane complex , 2004 .

[23]  G. Enright,et al.  Thermally programmable gas storage and release in single crystals of an organic van der Waals host. , 2003, Journal of the American Chemical Society.

[24]  J. Dutasta,et al.  Magnetization transfer from laser-polarized xenon to protons with spin-diffusion quenching. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  J. Dutasta,et al.  Xe@cryptophane Complexes with C2 Symmetry: Synthesis and Investigations by 129Xe NMR of the Consequences of the Size of the Host Cavity for Xenon Encapsulation , 2003 .

[26]  Y. Miyahara,et al.  "Molecular" molecular sieves: lid-free decamethylcucurbit[5]uril absorbs and desorbs gases selectively. , 2002, Angewandte Chemie.

[27]  A. Pines,et al.  Study of xenon binding in cryptophane-A using laser-induced NMR polarization enhancement , 1999 .

[28]  Y. Inoue,et al.  Complexation Thermodynamics of Cyclodextrins. , 1998, Chemical reviews.

[29]  J. Rebek,et al.  The 55 % Solution: A Formula for Molecular Recognition in the Liquid State , 1998 .

[30]  J. Dutasta,et al.  129Xe and 1H NMR Study of the Reversible Trapping of Xenon by Cryptophane-A in Organic Solution , 1998 .

[31]  Paul D. Kirchhoff,et al.  Structural Fluctuations of a Cryptophane Host: A Molecular Dynamics Simulation , 1996 .

[32]  L. Garel,et al.  Complexation of Methane and Chlorofluorocarbons by Cryptophane‐A in Organic Solution , 1993 .

[33]  J. Canceill,et al.  Structure and Properties of the Cryptophane‐E/CHCl3 Complex, a Stable van der Waals Molecule , 1989 .

[34]  A. Collet,et al.  Cyclotriveratrylenes and cryptophanes , 1988 .

[35]  A. Bondi van der Waals Volumes and Radii , 1964 .

[36]  D. Koshland Application of a Theory of Enzyme Specificity to Protein Synthesis. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Dutasta,et al.  Cryptophanes and their complexes--present and future. , 2009, Chemical reviews.

[38]  P. A. Hill Synthesis of functionalized cryptophane-A derivatives and assessment of their xenon-binding properties for the construction of hyperpolarized xenon-129 biosensors , 2008 .

[39]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[40]  Roger Fourme,et al.  Use of noble gases xenon and krypton as heavy atoms in protein structure determination. , 2003, Methods in enzymology.

[41]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[42]  G. Enright,et al.  Solid-state NMR and diffraction studies of p-tert-butylcalix[4]arene·nitrobenzene·xe non , 1997 .

[43]  J. Haile Molecular Dynamics Simulation , 1992 .

[44]  J. Canceill,et al.  Selective recognition of neutral molecules: 1H n.m.r. Study of the complexation of CH2Cl2 and CH2Br2 by cryptophane-D in solution and crystal structure of its CH2Cl2cavitate , 1986 .

[45]  J. Canceill,et al.  A new bis-cyclotribenzyl cavitand capable of selective inclusion of neutral molecules in solution. Crystal structure of its CH2Cl2 cavitate , 1985 .

[46]  M. Werber [Artificial enzymes]. , 1984, Harefuah.