Membrane proteins structures: A review on computational modeling tools.

BACKGROUND Membrane proteins (MPs) play diverse and important functions in living organisms. They constitute 20% to 30% of the known bacterial, archaean and eukaryotic organisms' genomes. In humans, their importance is emphasized as they represent 50% of all known drug targets. Nevertheless, experimental determination of their three-dimensional (3D) structure has proven to be both time consuming and rather expensive, which has led to the development of computational algorithms to complement the available experimental methods and provide valuable insights. SCOPE OF REVIEW This review highlights the importance of membrane proteins and how computational methods are capable of overcoming challenges associated with their experimental characterization. It covers various MP structural aspects, such as lipid interactions, allostery, and structure prediction, based on methods such as Molecular Dynamics (MD) and Machine-Learning (ML). MAJOR CONCLUSIONS Recent developments in algorithms, tools and hybrid approaches, together with the increase in both computational resources and the amount of available data have resulted in increasingly powerful and trustworthy approaches to model MPs. GENERAL SIGNIFICANCE Even though MPs are elementary and important in nature, the determination of their 3D structure has proven to be a challenging endeavor. Computational methods provide a reliable alternative to experimental methods. In this review, we focus on computational techniques to determine the 3D structure of MP and characterize their binding interfaces. We also summarize the most relevant databases and software programs available for the study of MPs.

[1]  Walter L Ash,et al.  Direct simulation of transmembrane helix association: role of asparagines. , 2004, Biophysical journal.

[2]  R. Schulz,et al.  Protein Structure Prediction , 2020, Methods in Molecular Biology.

[3]  Marta Filizola,et al.  Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Senes,et al.  Measurement of transmembrane peptide interactions in liposomes using Förster resonance energy transfer (FRET). , 2013, Methods in molecular biology.

[5]  M. Grabe,et al.  Continuum descriptions of membranes and their interaction with proteins: Towards chemically accurate models. , 2016, Biochimica et biophysica acta.

[6]  T. Cross,et al.  Solid state NMR strategy for characterizing native membrane protein structures. , 2013, Accounts of chemical research.

[7]  Hammad Naveed,et al.  Predicting three-dimensional structures of transmembrane domains of β-barrel membrane proteins. , 2012, Journal of the American Chemical Society.

[8]  Marta Bunster,et al.  Prediction of secondary structure of proteins by means of hydrophobicity profiles , 1982 .

[9]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[10]  A. Rzhetsky,et al.  The human ATP-binding cassette (ABC) transporter superfamily. , 2001, Genome research.

[11]  M. Michael Gromiha,et al.  A simple method for predicting transmembrane α helices with better accuracy , 1999 .

[12]  Yu-Yen Ou,et al.  Prediction of transporter targets using efficient RBF networks with PSSM profiles and biochemical properties , 2011, Bioinform..

[13]  R J Webb,et al.  Hydrophobic mismatch and the incorporation of peptides into lipid bilayers: a possible mechanism for retention in the Golgi. , 1998, Biochemistry.

[14]  B. Farran An update on the physiological and therapeutic relevance of GPCR oligomers , 2017, Pharmacological research.

[15]  Shilai Xing,et al.  Mouse ATP-Binding Cassette (ABC) Transporters Conferring Multi-Drug Resistance , 2015, Anti-cancer agents in medicinal chemistry.

[16]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[17]  M. Natália D. S. Cordeiro,et al.  Solvent Accessible Surface Area-Based Hot-Spot Detection Methods for Protein-Protein and Protein-Nucleic Acid Interfaces , 2015, J. Chem. Inf. Model..

[18]  R. Molday,et al.  The role of the photoreceptor ABC transporter ABCA4 in lipid transport and Stargardt macular degeneration. , 2009, Biochimica et biophysica acta.

[19]  Kuldip K. Paliwal,et al.  Proposing a highly accurate protein structural class predictor using segmentation-based features , 2014, BMC Genomics.

[20]  D. Julius,et al.  Structure of the TRPV1 ion channel determined by electron cryo-microscopy , 2013, Nature.

[21]  Milton H. Saier,et al.  The Transporter Classification Database , 2013, Nucleic Acids Res..

[22]  Samuel A. Safran,et al.  Membrane-induced interactions between inclusions , 1993 .

[23]  Irina S. Moreira,et al.  Allosteric communication between protomers of dopamine Class A GPCR dimers modulates activation , 2009, Nature chemical biology.

[24]  Ray Luo,et al.  Numerical Poisson-Boltzmann Model for Continuum Membrane Systems. , 2013, Chemical physics letters.

[25]  Nazim Madhavji,et al.  Organization , 2020, WER.

[26]  Barry Robson,et al.  Protein structure prediction , 1993, Nature.

[27]  A. Gorfe,et al.  Organization, dynamics, and segregation of Ras nanoclusters in membrane domains , 2012, Proceedings of the National Academy of Sciences.

[28]  Jianxin Wu Hidden Markov model , 2018 .

[29]  S. Durdağı,et al.  Identification of Novel Cholesterol-binding Regions in Kir2 Channels* , 2013, The Journal of Biological Chemistry.

[30]  Alessandro Senes,et al.  Membrane protein folding: beyond the two stage model , 2003, FEBS letters.

[31]  Zsuzsanna Dosztányi,et al.  TMDET: web server for detecting transmembrane regions of proteins by using their 3D coordinates , 2005, Bioinform..

[32]  Dariusz Matosiuk,et al.  Computational methods for studying G protein-coupled receptors (GPCRs). , 2016, Methods in cell biology.

[33]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[34]  Muhammad Tahir,et al.  PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine. , 2015, Molecular bioSystems.

[35]  D. Siderovski,et al.  Receptor-Mediated Activation of Heterotrimeric G-Proteins: Current Structural Insights , 2007, Molecular Pharmacology.

[36]  Liam J. McGuffin,et al.  The PSIPRED protein structure prediction server , 2000, Bioinform..

[37]  Ron O. Dror,et al.  Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations , 2016, PLoS Comput. Biol..

[38]  A. Chattopadhyay,et al.  Molecular dynamics simulations of GPCR-cholesterol interaction: An emerging paradigm. , 2015, Biochimica et biophysica acta.

[39]  D. Willbold,et al.  Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. , 2009, Journal of the American Chemical Society.

[40]  Vasant Honavar,et al.  HomPPI: a class of sequence homology based protein-protein interface prediction methods , 2011, BMC Bioinformatics.

[41]  Yigong Shi,et al.  Structure of a presenilin family intramembrane aspartate protease , 2012, Nature.

[42]  Ilan Samish,et al.  TMKink: A method to predict transmembrane helix kinks , 2011, Protein science : a publication of the Protein Society.

[43]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[44]  Thomas A. Hopf,et al.  Protein 3D Structure Computed from Evolutionary Sequence Variation , 2011, PloS one.

[45]  P. Stansfeld Computational studies of membrane proteins: from sequence to structure to simulation. , 2017, Current opinion in structural biology.

[46]  Timothy Nugent,et al.  De novo membrane protein structure prediction. , 2015, Methods in molecular biology.

[47]  G. Heijne,et al.  Recognition of transmembrane helices by the endoplasmic reticulum translocon , 2005, Nature.

[48]  L. P. Wang,et al.  Comments on "The Extreme Learning Machine" , 2008, IEEE Trans. Neural Networks.

[49]  Mark B Gerstein,et al.  Computational analysis of membrane proteins: the largest class of drug targets. , 2009, Drug discovery today.

[50]  J. Mccammon,et al.  Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor , 2015, Quarterly Reviews of Biophysics.

[51]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[52]  Ya-Jun Zheng,et al.  Non-canonical modulators of nuclear receptors. , 2016, Bioorganic & medicinal chemistry letters.

[53]  Nazar Zaki,et al.  A Combination of Compositional Index and Genetic Algorithm for Predicting Transmembrane Helical Segments , 2011, PloS one.

[54]  Patrick Argos,et al.  [10] Prediction of protein structure , 1986 .

[55]  Daniel S. Terry,et al.  Transport domain unlocking sets the uptake rate of an aspartate transporter , 2015, Nature.

[56]  Y. Sugita,et al.  Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. , 2016, Biochimica et biophysica acta.

[57]  V. Cherezov,et al.  Membrane protein crystallization in lipidic mesophases. A mechanism study using X-ray microdiffraction. , 2007, Faraday discussions.

[58]  B. Alberts,et al.  Ion Channels and the Electrical Properties of Membranes , 2002 .

[59]  John D. Chodera,et al.  Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale , 2015, bioRxiv.

[60]  J. Chou,et al.  A functional NMR for membrane proteins: dynamics, ligand binding, and allosteric modulation , 2016, Protein science : a publication of the Protein Society.

[61]  Mark S.P. Sansom,et al.  Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria , 2015, Nature.

[62]  Fei Xu,et al.  Mice lacking the norepinephrine transporter are supersensitive to psychostimulants , 2000, Nature Neuroscience.

[63]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[64]  A. Watts,et al.  G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. , 2013, The Biochemical journal.

[65]  Sriram Subramaniam,et al.  Cryo‐electron microscopy – a primer for the non‐microscopist , 2013, The FEBS journal.

[66]  M. Sansom,et al.  The juxtamembrane regions of human receptor tyrosine kinases exhibit conserved interaction sites with anionic lipids , 2015, Scientific Reports.

[67]  R. Mark Wightman,et al.  Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter , 1996, Nature.

[68]  Michael Cascio,et al.  Effects of membrane lipids on ion channel structure and function , 2007, Cell Biochemistry and Biophysics.

[69]  Georg E Schulz Transmembrane beta-barrel proteins. , 2003, Advances in protein chemistry.

[70]  S. Furini,et al.  Computational studies of transport in ion channels using metadynamics. , 2016, Biochimica et biophysica acta.

[71]  B. Roux,et al.  Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Rosenbusch,et al.  Approaches to determining membrane protein structures to high resolution: do selections of subpopulations occur? , 2001, Micron.

[73]  W R Taylor,et al.  A model recognition approach to the prediction of all-helical membrane protein structure and topology. , 1994, Biochemistry.

[74]  P Kolb,et al.  GPCRdb: the G protein‐coupled receptor database – an introduction , 2016, British journal of pharmacology.

[75]  Vasant G Honavar,et al.  Computational prediction of protein interfaces: A review of data driven methods , 2015, FEBS letters.

[76]  Mona Singh,et al.  Predicting Protein Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D Structure , 2009, PLoS Comput. Biol..

[77]  Charles L. Brooks,et al.  Generalized born model with a simple smoothing function , 2003, J. Comput. Chem..

[78]  Jejoong Yoo,et al.  A comparison of coarse-grained and continuum models for membrane bending in lipid bilayer fusion pores. , 2013, Biophysical journal.

[79]  B. Rost,et al.  Combining evolutionary information and neural networks to predict protein secondary structure , 1994, Proteins.

[80]  I. Moreira Structural features of the G-protein/GPCR interactions. , 2014, Biochimica et biophysica acta.

[81]  Stavros J. Hamodrakas,et al.  ExTopoDB: a database of experimentally derived topological models of transmembrane proteins , 2010, Bioinform..

[82]  Jie Liang,et al.  Interstrand pairing patterns in beta-barrel membrane proteins: the positive-outside rule, aromatic rescue, and strand registration prediction. , 2005, Journal of molecular biology.

[83]  Jia Bei Wang,et al.  GPCR Interacting Proteins , 2005 .

[84]  K. V. van Wijk,et al.  Consequences of Membrane Protein Overexpression in Escherichia coli*S , 2007, Molecular & Cellular Proteomics.

[85]  Jesús Giraldo,et al.  Computational Analysis of Negative and Positive Allosteric Modulator Binding and Function in Metabotropic Glutamate Receptor 5 (In)Activation , 2014, J. Chem. Inf. Model..

[86]  R. Suter,et al.  Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. , 1993, Biophysical journal.

[87]  Nicolas Le Novère,et al.  LGICdb: the ligand-gated ion channel database , 2001, Nucleic Acids Res..

[88]  Yao Zhang,et al.  Use of thiol-disulfide exchange method to study transmembrane peptide association in membrane environments. , 2013, Methods in molecular biology.

[89]  R. Raz,et al.  ProMate: a structure based prediction program to identify the location of protein-protein binding sites. , 2004, Journal of molecular biology.

[90]  Structure prediction for the down state of a potassium channel voltage sensor , 2007, Nature.

[91]  Sunhwan Jo,et al.  CHARMM‐GUI Membrane Builder toward realistic biological membrane simulations , 2014, J. Comput. Chem..

[92]  P. Yeagle,et al.  G-protein coupled receptor structure. , 2007, Biochimica et biophysica acta.

[93]  Cristina Marino Buslje,et al.  Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information , 2009, Bioinform..

[94]  J. M. East,et al.  Hydrophobic Mismatch and the Incorporation of Peptides into Lipid Bilayers: A Possible Mechanism for Retention in the Golgi† , 1998 .

[95]  Samuel Wagner,et al.  Tuning Escherichia coli for membrane protein overexpression , 2008, Proceedings of the National Academy of Sciences.

[96]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[97]  John D. Westbrook,et al.  EMDataBank unified data resource for 3DEM , 2013, Nucleic Acids Res..

[98]  Arne Elofsson,et al.  TOPCONS: consensus prediction of membrane protein topology , 2009, Nucleic Acids Res..

[99]  Klaus Schulten,et al.  QwikMD — Integrative Molecular Dynamics Toolkit for Novices and Experts , 2016, Scientific Reports.

[100]  Arne Elofsson,et al.  The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides , 2015, Nucleic Acids Res..

[101]  Benzhuo Lu,et al.  Continuum electromechanical modeling of protein-membrane interactions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[102]  J M Thornton,et al.  Protein structure prediction. , 1998, Current opinion in biotechnology.

[103]  S. White,et al.  Membrane protein folding and stability: physical principles. , 1999, Annual review of biophysics and biomolecular structure.

[104]  Jeffery B. Klauda,et al.  Peripheral membrane proteins: Tying the knot between experiment and computation. , 2016, Biochimica et biophysica acta.

[105]  Olivier Elemento,et al.  A Computational Approach for Identifying Synergistic Drug Combinations , 2017, PLoS Comput. Biol..

[106]  H. Khan,et al.  Structure prediction and analysis of mouse amiloride-sensitive cation channel 2, neuronal using bioinformatics tools , 2009, 2009 International Conference on Emerging Technologies.

[107]  M. Koelle,et al.  Evolutionary Conservation of a GPCR-Independent Mechanism of Trimeric G Protein Activation , 2015, Molecular biology and evolution.

[108]  Aleksey A. Porollo,et al.  Enhanced recognition of protein transmembrane domains with prediction-based structural profiles , 2006, Bioinform..

[109]  Loris Nanni,et al.  Prediction of protein structure classes by incorporating different protein descriptors into general Chou's pseudo amino acid composition. , 2014, Journal of theoretical biology.

[110]  S. Kuyucak,et al.  Molecular Dynamics Simulations of the Mammalian Glutamate Transporter EAAT3 , 2014, PloS one.

[111]  Frank Noé,et al.  HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. , 2016, Journal of chemical theory and computation.

[112]  Charles Elkan,et al.  The Transporter Classification Database: recent advances , 2008, Nucleic Acids Res..

[113]  Olaf S Andersen,et al.  Bilayer thickness and membrane protein function: an energetic perspective. , 2007, Annual review of biophysics and biomolecular structure.

[114]  R. Hodges,et al.  Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylcholine bilayers: differential scanning calorimetric and FTIR spectroscopic studies. , 1992, Biochemistry.

[115]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[116]  Dániel Kozma,et al.  PDBTM: Protein Data Bank of transmembrane proteins after 8 years , 2012, Nucleic Acids Res..

[117]  Avner Schlessinger,et al.  Coordinating the impact of structural genomics on the human α-helical transmembrane proteome , 2013, Nature Structural &Molecular Biology.

[118]  J. Edwards,et al.  Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations. , 2006, Biophysical chemistry.

[119]  Jeffrey J. Gray,et al.  Computational modeling of membrane proteins , 2015, Proteins.

[120]  B. Miroux,et al.  Expression of membrane proteins at the Escherichia coli membrane for structural studies. , 2010, Methods in molecular biology.

[121]  Hammad Naveed,et al.  Predicting weakly stable regions, oligomerization state, and protein–protein interfaces in transmembrane domains of outer membrane proteins , 2009, Proceedings of the National Academy of Sciences.

[122]  Vikas Nanda,et al.  Prediction and design of outer membrane protein-protein interactions. , 2013, Methods in molecular biology.

[123]  I. Moreira,et al.  Understanding the Differential Selectivity of Arrestins toward the Phosphorylation State of the Receptor. , 2016, ACS chemical neuroscience.

[124]  David A. Case,et al.  Effective Born radii in the generalized Born approximation: The importance of being perfect , 2002, J. Comput. Chem..

[125]  Timothy Nugent,et al.  Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis , 2012, Proceedings of the National Academy of Sciences.

[126]  G. Heijne,et al.  Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms , 1998, Protein science : a publication of the Protein Society.

[127]  R. Jockers,et al.  GPCR-interacting proteins, major players of GPCR function. , 2011, Advances in pharmacology.

[128]  Peter L. Freddolino,et al.  The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[129]  T. P. Flores,et al.  Protein structural topology: Automated analysis and diagrammatic representation , 2008, Protein science : a publication of the Protein Society.

[130]  S. Feske,et al.  Ion channels in innate and adaptive immunity. , 2015, Annual review of immunology.

[131]  Oliver F. Lange,et al.  Combining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction , 2015, PLoS Comput. Biol..

[132]  Asifullah Khan,et al.  WRF-TMH: predicting transmembrane helix by fusing composition index and physicochemical properties of amino acids , 2013, Amino Acids.

[133]  E. Carpenter,et al.  Overcoming the challenges of membrane protein crystallography , 2008, Current opinion in structural biology.

[134]  Jianyi Yang,et al.  GPCR-I-TASSER: A Hybrid Approach to G Protein-Coupled Receptor Structure Modeling and the Application to the Human Genome. , 2015, Structure.

[135]  Yu-Yen Ou,et al.  Prediction of membrane spanning segments and topology in β‐barrel membrane proteins at better accuracy , 2010, J. Comput. Chem..

[136]  Anthony G Lee,et al.  How lipids affect the activities of integral membrane proteins. , 2004, Biochimica et biophysica acta.

[137]  Mikael Bodén,et al.  Predicting the solvent accessibility of transmembrane residues from protein sequence. , 2006, Journal of proteome research.

[138]  K. Schulten,et al.  An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations , 2012, The Journal of general physiology.

[139]  Po-Hsien Lee,et al.  PRIMSIPLR: Prediction of inner‐membrane situated pore‐lining residues for alpha‐helical transmembrane proteins , 2014, Proteins.

[140]  Sean R Eddy,et al.  What is a hidden Markov model? , 2004, Nature Biotechnology.

[141]  S. Baldwin,et al.  A high-throughput assay of membrane protein stability , 2008, Molecular membrane biology.

[142]  J Koepke,et al.  Structure at 2.3 A resolution of the cytochrome bc(1) complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. , 2000, Structure.

[143]  Charles R Sanders,et al.  Solution Nuclear Magnetic Resonance Structure of Membrane-Integral Diacylglycerol Kinase , 2009, Science.

[144]  V. Vyas,et al.  Homology Modeling a Fast Tool for Drug Discovery: Current Perspectives , 2012, Indian journal of pharmaceutical sciences.

[145]  A. Valencia,et al.  Emerging methods in protein co-evolution , 2013, Nature Reviews Genetics.

[146]  Peter A. Edwards,et al.  Role of ABC transporters in lipid transport and human disease , 2013, Trends in Endocrinology & Metabolism.

[147]  Risto J. Ilmoniemi,et al.  Magnetic-Stimulation-Related Physiological Artifacts in Hemodynamic Near-Infrared Spectroscopy Signals , 2011, PloS one.

[148]  Anna Tramontano,et al.  Critical assessment of methods of protein structure prediction (CASP) — round x , 2014, Proteins.

[149]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[150]  Xin-Qiu Yao,et al.  Online interactive analysis of protein structure ensembles with Bio3D-web , 2016, Bioinform..

[151]  Pierre Tufféry,et al.  InterEvDock: a docking server to predict the structure of protein–protein interactions using evolutionary information , 2016, Nucleic Acids Res..

[152]  Milton H. Saier,et al.  The Transporter Classification Database (TCDB): recent advances , 2015, Nucleic Acids Res..

[153]  Hongbin Shen,et al.  MemBrain: Improving the Accuracy of Predicting Transmembrane Helices , 2008, PloS one.

[154]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[155]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[156]  Thomas A. Hopf,et al.  Sequence co-evolution gives 3D contacts and structures of protein complexes , 2014, eLife.

[157]  A. Valencia,et al.  Correlated mutations contain information about protein-protein interaction. , 1997, Journal of molecular biology.

[158]  A. Lomize,et al.  Thermodynamic model of secondary structure for α-helical peptides and proteins , 1997 .

[159]  G. Oster,et al.  Curvature-mediated interactions between membrane proteins. , 1998, Biophysical journal.

[160]  G. Oster,et al.  Effect of protein shape on multibody interactions between membrane inclusions. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[161]  J. Whisstock,et al.  Prediction of protein function from protein sequence and structure , 2003, Quarterly Reviews of Biophysics.

[162]  L. Tamm,et al.  NMR as a tool to investigate the structure, dynamics and function of membrane proteins , 2016, Nature Structural &Molecular Biology.

[163]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[164]  E. Lindahl,et al.  Membrane proteins: molecular dynamics simulations. , 2008, Current opinion in structural biology.

[165]  A. Johs,et al.  The interactions of peripheral membrane proteins with biological membranes. , 2015, Chemistry and physics of lipids.

[166]  Michael Feig,et al.  Molecular dynamics simulations of large integral membrane proteins with an implicit membrane model. , 2006, The journal of physical chemistry. B.

[167]  David C. Gadsby,et al.  Ion channels versus ion pumps: the principal difference, in principle , 2009, Nature Reviews Molecular Cell Biology.

[168]  B Honig,et al.  Free-energy determinants of alpha-helix insertion into lipid bilayers. , 1996, Biophysical journal.

[169]  Sarel J Fleishman,et al.  Free diffusion of steroid hormones across biomembranes: a simplex search with implicit solvent model calculations. , 2004, Biophysical journal.

[170]  C. Brooks,et al.  An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. , 2003, Biophysical journal.

[171]  Donghai Li,et al.  Effects of glycerol and high temperatures on structure and function of phycobilisomes in Synechocystis sp. PCC 6803 , 2003, FEBS letters.

[172]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[173]  D. Shortle,et al.  Prediction of protein structure , 2000, Current Biology.

[174]  Michael V. LeVine,et al.  Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters. , 2016, Chemical reviews.

[175]  M. Weigt,et al.  Coevolutionary Landscape Inference and the Context-Dependence of Mutations in Beta-Lactamase TEM-1 , 2015, bioRxiv.

[176]  G. Jansen,et al.  ABC drug transporters and immunity: novel therapeutic targets in autoimmunity and cancer , 2009, Journal of leukocyte biology.

[177]  Sebastian Kelm,et al.  MEDELLER: homology-based coordinate generation for membrane proteins , 2010, Bioinform..

[178]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[179]  Yungki Park,et al.  Prediction of the burial status of transmembrane residues of helical membrane proteins , 2007, BMC Bioinformatics.

[180]  Christoph Göbl,et al.  Prediction of Protein Structure Using Surface Accessibility Data , 2016, Angewandte Chemie.

[181]  Piero Fariselli,et al.  Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications , 2009, Algorithms for Molecular Biology.

[182]  Michael V. LeVine,et al.  Role of Annular Lipids in the Functional Properties of Leucine Transporter LeuT Proteomicelles , 2016, Biochemistry.

[183]  Aleksey A. Porollo,et al.  Prediction‐based fingerprints of protein–protein interactions , 2006, Proteins.

[184]  E. Pai,et al.  Opsin, a structural model for olfactory receptors? , 2013, Angewandte Chemie.

[185]  B. Kobilka G protein coupled receptor structure and activation. , 2007, Biochimica et biophysica acta.

[186]  Warren J. Gallin,et al.  VKCDB: voltage-gated K+ channel database updated and upgraded , 2010, Nucleic Acids Res..

[187]  F. Brown Continuum simulations of biomembrane dynamics and the importance of hydrodynamic effects , 2011, Quarterly Reviews of Biophysics.

[188]  H Weinstein,et al.  Agonists induce conformational changes in transmembrane domains III and VI of the β2 adrenoceptor , 1997, The EMBO journal.

[189]  D. Doyle,et al.  Molecular insights into ion channel function (Review) , 2004, Molecular membrane biology.

[190]  Brian D. Weitzner,et al.  An Integrated Framework Advancing Membrane Protein Modeling and Design , 2015, PLoS Comput. Biol..

[191]  H. Nymeyer,et al.  Folding is not required for bilayer insertion: Replica exchange simulations of an α‐helical peptide with an explicit lipid bilayer , 2004, Proteins.

[192]  Martin Caffrey,et al.  A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes , 2015, Acta crystallographica. Section F, Structural biology communications.

[193]  Richard W Aldrich,et al.  On Evolutionary Conservation of Thermodynamic Coupling in Proteins* , 2004, Journal of Biological Chemistry.

[194]  Daniel Tran,et al.  Mechanosensitive channels: feeling tension in a world under pressure , 2014, Front. Plant Sci..

[195]  P. Escribá,et al.  Role of lipid polymorphism in G protein-membrane interactions: nonlamellar-prone phospholipids and peripheral protein binding to membranes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[196]  David Baker,et al.  Voltage sensor conformations in the open and closed states in ROSETTA structural models of K(+) channels. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[197]  O. Stegle,et al.  Deep learning for computational biology , 2016, Molecular systems biology.

[198]  W. Im,et al.  Ion channels, permeation, and electrostatics: insight into the function of KcsA. , 2000, Biochemistry.

[199]  Yaoqi Zhou,et al.  Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method , 2003 .

[200]  G. Privé,et al.  Detergents for the stabilization and crystallization of membrane proteins. , 2007, Methods.

[201]  D. Miklavčič,et al.  Properties of lipid electropores II: Comparison of continuum-level modeling of pore conductance to molecular dynamics simulations. , 2016, Bioelectrochemistry.

[202]  J. Simon,et al.  Evolutionary conservation and predicted structure of the Drosophila extra sex combs repressor protein , 1997, Molecular and cellular biology.

[203]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[204]  Robert B. Russell,et al.  Protein structure prediction , 1993, Nature.

[205]  Martin Fussenegger,et al.  An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. , 2013, Biotechnology advances.

[206]  D. Schneider,et al.  Genetic systems for monitoring interactions of transmembrane domains in bacterial membranes. , 2013, Methods in molecular biology.

[207]  O. Lund,et al.  Prediction of protein secondary structure at 80% accuracy , 2000, Proteins.

[208]  M. A. Alonso,et al.  The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. , 2001, Journal of cell science.

[209]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[210]  W. DeGrado,et al.  Helix-packing motifs in membrane proteins , 2006, Proceedings of the National Academy of Sciences.

[211]  Makiko Suwa,et al.  Discrimination of outer membrane proteins using machine learning algorithms , 2006, Proteins.

[212]  R. Gainetdinov,et al.  Plasma membrane monoamine transporters: structure, regulation and function , 2003, Nature Reviews Neuroscience.

[213]  Yu-Yen Ou,et al.  Bioinformatics approaches for functional annotation of membrane proteins , 2014, Briefings Bioinform..

[214]  A. Giorgetti,et al.  Genome-wide Membrane Protein Structure Prediction , 2013, Current genomics.

[215]  Shandar Ahmad,et al.  Integrated prediction of one-dimensional structural features and their relationships with conformational flexibility in helical membrane proteins , 2010, BMC Bioinformatics.

[216]  Thijs Beuming,et al.  A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins , 2004, Bioinform..

[217]  M.N.S. Swamy,et al.  Radial Basis Function Networks , 2014 .

[218]  Georg E. Schulz,et al.  Transmembrane β-barrel proteins , 2003 .

[219]  Allison Doerr Membrane protein structures , 2008, Nature Methods.

[220]  Donald Hamelberg,et al.  Towards fast, rigorous and efficient conformational sampling of biomolecules: Advances in accelerated molecular dynamics. , 2015, Biochimica et biophysica acta.

[221]  Jennifer J Linderman,et al.  Modeling of G-protein-coupled Receptor Signaling Pathways* , 2009, Journal of Biological Chemistry.

[222]  Rob Phillips,et al.  Mechanosensitive channels: what can they do and how do they do it? , 2011, Structure.

[223]  S. Orlowski,et al.  Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-ATPase from sarcoplasmic reticulum. , 1989, The Journal of biological chemistry.

[224]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[225]  Veronica Morea,et al.  Protein structure prediction. , 2008, Methods in molecular biology.

[226]  Toni Giorgino,et al.  Identification of slow molecular order parameters for Markov model construction. , 2013, The Journal of chemical physics.

[227]  F. Van Bambeke,et al.  ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions. , 2011, Current drug targets.

[228]  Nathan A. Baker,et al.  Improving implicit solvent simulations: a Poisson-centric view. , 2005, Current opinion in structural biology.

[229]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[230]  H. Weinstein,et al.  A mechanistic role of Helix 8 in GPCRs: Computational modeling of the dopamine D2 receptor interaction with the GIPC1-PDZ-domain. , 2015, Biochimica et biophysica acta.

[231]  Yu-Chu Chang,et al.  Measuring transmembrane helix interaction strengths in lipid bilayers using steric trapping. , 2013, Methods in molecular biology.

[232]  W. Kühlbrandt,et al.  Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae , 2012, Proceedings of the National Academy of Sciences.

[233]  S. Kuyucak,et al.  Computational Studies of Glutamate Transporters , 2015, Biomolecules.

[234]  Ken A Dill,et al.  Computed Binding of Peptides to Proteins with MELD-Accelerated Molecular Dynamics. , 2017, Journal of chemical theory and computation.

[235]  Christian Cole,et al.  JPred4: a protein secondary structure prediction server , 2015, Nucleic Acids Res..

[236]  Christian Kandt,et al.  Concentration Dependent Ion-Protein Interaction Patterns Underlying Protein Oligomerization Behaviours , 2016, Scientific Reports.

[237]  Kenji Mizuguchi,et al.  Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites , 2010, Bioinform..

[238]  C. Robinson,et al.  Structural and Functional Basis for Lipid Synergy on the Activity of the Antibacterial Peptide ABC Transporter McjD* , 2016, The Journal of Biological Chemistry.

[239]  Yael Marantz,et al.  Modeling the 3D structure of GPCRs: advances and application to drug discovery. , 2003, Current opinion in drug discovery & development.

[240]  Mark Gerstein,et al.  An integrated system for studying residue coevolution in proteins , 2008, Bioinform..

[241]  J. Lyons,et al.  Membrane Protein Crystallization in Lipidic Mesophases. Hosting lipid affects on the crystallization and structure of a transmembrane peptide. , 2011, Crystal growth & design.

[242]  W. Im,et al.  Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory. , 2004, Biophysical journal.

[243]  Eric Gouaux,et al.  Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter , 2007, Nature.

[244]  Guilhem Faure,et al.  InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution , 2013, Bioinform..

[245]  M. von Zastrow,et al.  G Protein-coupled Receptor (GPCR) Signaling via Heterotrimeric G Proteins from Endosomes* , 2015, The Journal of Biological Chemistry.

[246]  Julia Koehler Leman,et al.  Expanding the toolkit for membrane protein modeling in Rosetta , 2016, Bioinform..

[247]  M. Kaplan,et al.  Nuclear magnetic resonance (NMR) applied to membrane–protein complexes , 2016, Quarterly Reviews of Biophysics.

[248]  L. Brown,et al.  Paramagnetic relaxation enhancement reveals oligomerization interface of a membrane protein. , 2012, Journal of the American Chemical Society.

[249]  K. Mizuguchi,et al.  Partner-Aware Prediction of Interacting Residues in Protein-Protein Complexes from Sequence Data , 2011, PloS one.

[250]  George Khelashvili,et al.  GPCR-OKB: the G Protein Coupled Receptor Oligomer Knowledge Base , 2010, Bioinform..

[251]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[252]  Sue London,et al.  Automatic Export of PubMed® Citations to EndNote® , 2010, Medical reference services quarterly.

[253]  Richard W. Aldrich,et al.  A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments , 2004, Bioinform..

[254]  Jeffery B. Klauda,et al.  CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. , 2009, Biophysical journal.

[255]  J Garnier,et al.  Protein structure prediction. , 1990, Biochimie.

[256]  Stavros J. Hamodrakas,et al.  OMPdb: a database of β-barrel outer membrane proteins from Gram-negative bacteria , 2010, Nucleic Acids Res..

[257]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .

[258]  H. Weinstein,et al.  Conformational Dynamics on the Extracellular Side of LeuT Controlled by Na+ and K+ Ions and the Protonation State of Glu290* , 2016, The Journal of Biological Chemistry.

[259]  Alexandre M. J. J. Bonvin,et al.  CPORT: A Consensus Interface Predictor and Its Performance in Prediction-Driven Docking with HADDOCK , 2011, PloS one.

[260]  M. Sansom,et al.  NRas slows the rate at which a model lipid bilayer phase separates† †Electronic supplementary information (ESI) available: See DOI: 10.1039/c3fd00131h Click here for additional data file. , 2014, Faraday discussions.

[261]  Robert Fredriksson,et al.  Mapping the human membrane proteome : a majority of the human membrane proteins can be classified according to function and evolutionary origin , 2015 .

[262]  D. Frishman,et al.  Prediction of helix–helix contacts and interacting helices in polytopic membrane proteins using neural networks , 2009, Proteins.

[263]  Piero Fariselli,et al.  MemPype: a pipeline for the annotation of eukaryotic membrane proteins , 2011, Nucleic Acids Res..

[264]  Eric Gouaux,et al.  Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. , 2007, Nature.

[265]  G. Heijne Membrane-protein topology , 2006, Nature Reviews Molecular Cell Biology.

[266]  Piero Fariselli,et al.  BETAWARE: a machine-learning tool to detect and predict transmembrane beta-barrel proteins in prokaryotes , 2013, Bioinform..

[267]  A. Goldman,et al.  Transport mechanism of a glutamate transporter homologue GltPh , 2016, Biochemical Society transactions.

[268]  A. Krogh,et al.  A combined transmembrane topology and signal peptide prediction method. , 2004, Journal of molecular biology.

[269]  George Khelashvili,et al.  A Functional Selectivity Mechanism at the Serotonin-2A GPCR Involves Ligand-Dependent Conformations of Intracellular Loop 2 , 2014, Journal of the American Chemical Society.

[270]  Piero Fariselli,et al.  An ENSEMBLE machine learning approach for the prediction of all-alpha membrane proteins , 2003, ISMB.

[271]  H Weinstein,et al.  Signal transduction by a 5-HT2 receptor: a mechanistic hypothesis from molecular dynamics simulations of the three-dimensional model of the receptor complexed to ligands. , 1993, Journal of medicinal chemistry.

[272]  Rafael C. Bernardi,et al.  Enhanced sampling techniques in molecular dynamics simulations of biological systems. , 2015, Biochimica et biophysica acta.

[273]  Yungki Park,et al.  Prediction of the Exposure Status of transmembrane beta Barrel residues from protein Sequence , 2011, J. Bioinform. Comput. Biol..

[274]  Thomas A. Hopf,et al.  Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing , 2012, Cell.

[275]  Gajendra P. S. Raghava,et al.  VGIchan : Prediction and Classification of Voltage-Gated Ion Channels , 2012 .

[276]  Pedro Alexandrino Fernandes,et al.  Protein–protein docking dealing with the unknown , 2009, J. Comput. Chem..

[277]  Ian T. Paulsen,et al.  TransportDB: a relational database of cellular membrane transport systems , 2004, Nucleic Acids Res..

[278]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[279]  Andrei L. Lomize,et al.  Anisotropic Solvent Model of the Lipid Bilayer. 2. Energetics of Insertion of Small Molecules, Peptides, and Proteins in Membranes , 2011, J. Chem. Inf. Model..

[280]  C. Sander,et al.  Predicting the functional impact of protein mutations: application to cancer genomics , 2011, Nucleic acids research.

[281]  Michael Habeck,et al.  Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals , 2012, Nature Methods.

[282]  George Khelashvili,et al.  A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter , 2017, Scientific Reports.

[283]  D. Tieleman,et al.  Effect of confinement on DNA, solvent and counterion dynamics in a model biological nanopore. , 2014, Nanoscale.

[284]  Antonio Ferrer-Montiel,et al.  Ionic Channels as Targets for Drug Design: A Review on Computational Methods , 2011, Pharmaceutics.

[285]  Ian T. Paulsen,et al.  TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels , 2006, Nucleic Acids Res..

[286]  S. Moro,et al.  Advances in Computational Techniques to Study GPCR-Ligand Recognition. , 2015, Trends in pharmacological sciences.

[287]  B. Schiøtt,et al.  The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. , 2015, Biochimica et biophysica acta.

[288]  Avinash Peddi,et al.  Electronic Reprint Biological Crystallography a Robotic System for Crystallizing Membrane and Soluble Proteins in Lipidic Mesophases Biological Crystallography a Robotic System for Crystallizing Membrane and Soluble Proteins in Lipidic Mesophases , 2022 .

[289]  Debora S. Marks,et al.  Structure, Dynamics and Implied Gating Mechanism of a Human Cyclic Nucleotide-Gated Channel , 2014, PLoS Comput. Biol..

[290]  D. Brown,et al.  Functions of lipid rafts in biological membranes. , 1998, Annual review of cell and developmental biology.

[291]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[292]  M. Scarselli,et al.  Constitutive Internalization of G Protein-coupled Receptors and G Proteins via Clathrin-independent Endocytosis* , 2009, Journal of Biological Chemistry.

[293]  Giovanna Ghirlanda,et al.  Membrane Proteins , 2013, Methods in Molecular Biology.

[294]  Roman G. Efremov,et al.  PREDDIMER: a web server for prediction of transmembrane helical dimers , 2014, Bioinform..

[295]  B. Schiøtt,et al.  Insights to ligand binding to the monoamine transporters—from homology modeling to LeuBAT and dDAT , 2015, Front. Pharmacol..

[296]  Sebastian Kelm,et al.  Memoir: template-based structure prediction for membrane proteins , 2013, Nucleic Acids Res..

[297]  David T. Jones,et al.  MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins , 2014, Bioinform..

[298]  Gábor E. Tusnády,et al.  TMFoldWeb: a web server for predicting transmembrane protein fold class , 2015, Biology Direct.

[299]  Andrei L. Lomize,et al.  Membranome: a database for proteome-wide analysis of single-pass membrane proteins , 2016, Nucleic Acids Res..

[300]  Gert Vriend,et al.  GPCRDB information system for G protein-coupled receptors , 2003, Nucleic Acids Res..

[301]  Vinay Kumar Singh,et al.  MFPPI – Multi FASTA ProtParam Interface , 2016, Bioinformation.

[302]  M. Seeber,et al.  Quaternary structure predictions and structural communication features of GPCR dimers. , 2013, Progress in molecular biology and translational science.

[303]  Arne Elofsson,et al.  Inclusion of dyad-repeat pattern improves topology prediction of transmembrane β-barrel proteins , 2016, Bioinform..

[304]  Anna L. Duncan,et al.  Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale , 2016, Current opinion in structural biology.

[305]  Antonio Lavecchia,et al.  Machine-learning approaches in drug discovery: methods and applications. , 2015, Drug discovery today.

[306]  J. Mongan,et al.  Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. , 2004, The Journal of chemical physics.

[307]  A. Rawlings,et al.  Membrane proteins: always an insoluble problem? , 2016, Biochemical Society transactions.

[308]  Spencer S. Ericksen,et al.  Structural Basis of Dopamine Receptor Activation , 2010 .

[309]  Arthur Christopoulos,et al.  Functional Selectivity and Classical Concepts of Quantitative Pharmacology , 2007, Journal of Pharmacology and Experimental Therapeutics.

[310]  T. Patel,et al.  Single Transmembrane Spanning Heterotrimeric G Protein-Coupled Receptors and Their Signaling Cascades , 2004, Pharmacological Reviews.

[311]  Dániel Kozma,et al.  TMFoldRec: a statistical potential-based transmembrane protein fold recognition tool , 2015, BMC Bioinformatics.

[312]  Aleksey A. Porollo,et al.  CoeViz: a web-based tool for coevolution analysis of protein residues , 2016, BMC Bioinformatics.

[313]  Bas Vroling,et al.  GPCRdb: an information system for G protein-coupled receptors , 2015, Nucleic Acids Res..

[314]  Sitao Wu,et al.  LOMETS: A local meta-threading-server for protein structure prediction , 2007, Nucleic acids research.

[315]  Qin Ouyang,et al.  Homology modeling, docking, and molecular dynamics simulation of the receptor GALR2 and its interactions with galanin and a positive allosteric modulator , 2016, Journal of Molecular Modeling.

[316]  George A. Khoury,et al.  Protein folding and de novo protein design for biotechnological applications. , 2014, Trends in biotechnology.

[317]  Qiang Yang,et al.  The choice of null distributions for detecting gene-gene interactions in genome-wide association studies , 2011, BMC Bioinformatics.

[318]  T. Rauen,et al.  SLC1 glutamate transporters , 2013, Pflügers Archiv - European Journal of Physiology.

[319]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[320]  M. Gromiha,et al.  Mutational studies to understand the structure-function relationship in multidrug efflux transporters: applications for distinguishing mutants with high specificity. , 2015, International journal of biological macromolecules.

[321]  Cheng Huang,et al.  Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. , 2016, Cancer letters.

[322]  Sven Hovmöller,et al.  Prediction of Protein Structure , 2004, Numerical Computer Methods, Part D.

[323]  D. Murphy,et al.  Altered brain serotonin homeostasis and locomotor insensitivity to 3, 4-methylenedioxymethamphetamine ("Ecstasy") in serotonin transporter-deficient mice. , 1998, Molecular pharmacology.

[324]  Joseph E. Goose,et al.  MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes , 2015, Structure.

[325]  Charles L. Brooks,et al.  Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures , 2004, J. Comput. Chem..

[326]  John D. Chodera,et al.  Long-Time Protein Folding Dynamics from Short-Time Molecular Dynamics Simulations , 2006, Multiscale Model. Simul..

[327]  B. Rost,et al.  TMSEG: Novel prediction of transmembrane helices , 2016, Proteins.

[328]  Gwyndaf Evans,et al.  Membrane protein structure determination — The next generation , 2014, Biochimica et biophysica acta.

[329]  A. Ben-Hur,et al.  PAIRpred: Partner‐specific prediction of interacting residues from sequence and structure , 2014, Proteins.

[330]  Sukanta Mondal,et al.  THGS: a web-based database of Transmembrane Helices in Genome Sequences , 2004, Nucleic Acids Res..

[331]  A. Herrmann,et al.  Function of prokaryotic and eukaryotic ABC proteins in lipid transport. , 2005, Biochimica et biophysica acta.

[332]  Yigong Shi Common folds and transport mechanisms of secondary active transporters. , 2013, Annual review of biophysics.

[333]  A. Waszkielewicz,et al.  Send Orders of Reprints at Reprints@benthamscience.net Ion Channels as Drug Targets in Central Nervous System Disorders , 2022 .

[334]  Michael Dean,et al.  Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. , 2005, Annual review of genomics and human genetics.

[335]  Yalin Baştanlar,et al.  Introduction to machine learning. , 2014, Methods in molecular biology.

[336]  Marc S. Lewis,et al.  Modern analytical ultracentrifugation in protein science: A tutorial review , 2002, Protein science : a publication of the Protein Society.

[337]  B. Rost,et al.  Prediction of protein secondary structure at better than 70% accuracy. , 1993, Journal of molecular biology.

[338]  M M Gromiha A simple method for predicting transmembrane alpha helices with better accuracy. , 1999, Protein engineering.

[339]  M. Coumar,et al.  Identification of natural inhibitors of Bcr‐Abl for the treatment of chronic myeloid leukemia , 2017, Chemical biology & drug design.

[340]  K. Schulten,et al.  Gating of MscL studied by steered molecular dynamics. , 2003, Biophysical journal.

[341]  David A Grimaldi Amber , 2019, Current Biology.

[342]  J. Meiler,et al.  Membrane protein structure determination using paramagnetic tags. , 2011, Structure.

[343]  D. Baker,et al.  Multipass membrane protein structure prediction using Rosetta , 2005, Proteins.

[344]  Thermodynamic model of secondary structure for alpha-helical peptides and proteins. , 1997, Biopolymers.

[345]  Alessandro Senes,et al.  A frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical Cα–H hydrogen bonds , 2014, Proceedings of the National Academy of Sciences.

[346]  Ernest B. Campbell,et al.  Structure of a CLC chloride ion channel by cryo-electron microscopy , 2016, Nature.

[347]  O. Pongs,et al.  Structural determinants of specific lipid binding to potassium channels. , 2013, Journal of the American Chemical Society.

[348]  Naomi R. Latorraca,et al.  Continuum Approaches to Understanding Ion and Peptide Interactions with the Membrane , 2014, The Journal of Membrane Biology.

[349]  Irina S. Moreira,et al.  A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces , 2016, International journal of molecular sciences.

[350]  T. Pollard,et al.  Annual review of biophysics and biomolecular structure , 1992 .

[351]  Henry Markram,et al.  Channelpedia: An Integrative and Interactive Database for Ion Channels , 2011, Front. Neuroinform..

[352]  J. Killian,et al.  Hydrophobic mismatch between helices and lipid bilayers. , 2003, Biophysical journal.

[353]  David T. Jones,et al.  Transmembrane protein topology prediction using support vector machines , 2009, BMC Bioinformatics.

[354]  Y J Edwards,et al.  Prediction of protein structure and function by using bioinformatics. , 2001, Methods in molecular biology.

[355]  Daniela Digles,et al.  Computational models for predicting the interaction with ABC transporters. , 2014, Drug discovery today. Technologies.

[356]  Arne Elofsson,et al.  OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar , 2008, Bioinform..

[357]  Andrea Pagnani,et al.  Inter-Protein Sequence Co-Evolution Predicts Known Physical Interactions in Bacterial Ribosomes and the Trp Operon , 2015, PloS one.

[358]  F. Rabanal,et al.  Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells , 2015, Scientific Reports.

[359]  I. Huhtaniemi,et al.  Single Molecule Analysis of Functionally Asymmetric G Protein-coupled Receptor (GPCR) Oligomers Reveals Diverse Spatial and Structural Assemblies*♦ , 2014, The Journal of Biological Chemistry.

[360]  David T. Jones,et al.  Improving the accuracy of transmembrane protein topology prediction using evolutionary information , 2007, Bioinform..

[361]  Mona Singh,et al.  Predicting functionally important residues from sequence conservation , 2007, Bioinform..

[362]  S A Benner,et al.  Protein structure prediction. , 1996, Science.

[363]  Annie Frelet-Barrand,et al.  Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host , 2011, PloS one.