Robust model predictive control

This thesis deals with the topic of min-max formulations of robust model predictive control problems. The sets involved in guaranteeing robust feasibility of the min-max program in the presence of state constraints are of particular interest, and expanding the applicability of well understood solvers of linearly constrained quadratic min-max programs is the main focus. To this end, a generalisation for the set of uncertainty is considered: instead of fixed bounds on the uncertainty, state- and input-dependent bounds are used. To deal with state- and input dependent constraint sets a framework for a particular class of set-valued maps is utilised, namely parametrically convex set-valued maps. Relevant properties and operations are developed to accommodate parametrically convex set-valued maps in the context of robust model predictive control. A quintessential part of this work is the study of fundamental properties of piecewise polyhedral set-valued maps which are parametrically convex, we show that one particular property is that their combinatorial structure is constant. The study of polytopic maps with a rigid combinatorial structure allows the use of an optimisation based approach of robustifying constrained control problems with probabilistic constraints. Auxiliary polytopic constraint sets, used to replace probabilistic constraints by deterministic ones, can be optimised to minimise the conservatism introduced while guaranteeing constraint satisfaction of the original probabilistic constraint. We furthermore study the behaviour of the maximal robust positive invariant set for the case of scaled uncertainty and show that this set is continuously polytopic up to a critical scaling factor, which we can approximate a-priori with an arbitrary degree of accuracy. Relevant theoretical statements are developed, discussed and illustrated with examples.

[1]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[2]  D. Bertsekas,et al.  On the minimax reachability of target sets and target tubes , 1971 .

[3]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[4]  M. Morari,et al.  Geometric Algorithm for Multiparametric Linear Programming , 2003 .

[5]  H. Minkowski Volumen und Oberfläche , 1903 .

[6]  G. Ziegler Lectures on Polytopes , 1994 .

[7]  J. Maciejowski,et al.  Equality Set Projection: A new algorithm for the projection of polytopes in halfspace representation , 2004 .

[8]  Giuseppe Carlo Calafiore,et al.  Random Convex Programs , 2010, SIAM J. Optim..

[9]  Basil Kouvaritakis,et al.  An active set solver for min-max robust control , 2013, 2013 American Control Conference.

[10]  G. Nicolao,et al.  Stability and Robustness of Nonlinear Receding Horizon Control , 2000 .

[11]  Selmer M. Johnson,et al.  Sequential Production Planning Over Time at Minimum Cost , 1957 .

[12]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[13]  Didier Dumur,et al.  A parameterized polyhedra approach for the explicit robust model predictive control , 2005, ICINCO.

[14]  H. ChenT,et al.  A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme with Guaranteed Stability * , 1998 .

[15]  David Bremner,et al.  Primal—Dual Methods for Vertex and Facet Enumeration , 1998, Discret. Comput. Geom..

[16]  Mayuresh V. Kothare,et al.  An e!cient o"-line formulation of robust model predictive control using linear matrix inequalities (cid:1) , 2003 .

[17]  B. Kouvaritakis,et al.  Efficient MPC Optimization using Pontryagin's Minimum Principle , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[18]  David W. Barnette An upper bound for the diameter of a polytope , 1974, Discret. Math..

[19]  M. Kothare,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[20]  Victor Klee,et al.  The d-Step Conjecture and Its Relatives , 1987, Math. Oper. Res..

[21]  Jie Sun On the structure of convex piecewise quadratic functions , 1992 .

[22]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[23]  Jean B. Lasserre,et al.  A Laplace transform algorithm for the volume of a convex polytope , 2001, JACM.

[24]  T. Badgwell Robust model predictive control of stable linear systems , 1997 .

[25]  B. Kouvaritakis,et al.  Active set solver for min‐max robust control with state and input constraints , 2016 .

[26]  G. Kalai,et al.  A quasi-polynomial bound for the diameter of graphs of polyhedra , 1992, math/9204233.

[27]  John Lygeros,et al.  On the Road Between Robust Optimization and the Scenario Approach for Chance Constrained Optimization Problems , 2014, IEEE Transactions on Automatic Control.

[28]  John Lygeros,et al.  Convex approximation of chance-constrained MPC through piecewise affine policies using randomized and robust optimization , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[29]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[30]  Moritz Schulze Darup,et al.  On the finite determinedness of maximal RPI sets for linear systems with scaled disturbances , 2018, 2018 European Control Conference (ECC).

[31]  Didier Dumur,et al.  A parameterized polyhedra approach for explicit constrained predictive control , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[32]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[33]  G. Nicolao,et al.  On the robustness of receding-horizon control with terminal constraints , 1996, IEEE Trans. Autom. Control..

[34]  Basil Kouvaritakis,et al.  An active set solver for input-constrained robust receding horizon control , 2011, IEEE Conference on Decision and Control and European Control Conference.

[35]  Mark Cannon,et al.  Robust positively invariant sets for state dependent and scaled disturbances , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[36]  D. Grant Fisher,et al.  A state space formulation for model predictive control , 1989 .

[37]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[38]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[39]  L. Magni,et al.  Stability margins of nonlinear receding-horizon control via inverse optimality , 1997 .

[40]  Marco C. Campi,et al.  A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality , 2011, J. Optim. Theory Appl..

[41]  Alberto Bemporad,et al.  Stabilizing embedded MPC with computational complexity guarantees , 2013, 2013 European Control Conference (ECC).

[42]  Komei Fukuda,et al.  Double Description Method Revisited , 1995, Combinatorics and Computer Science.

[43]  G. Birkhoff,et al.  Piecewise affine functions and polyhedral sets , 1994 .

[44]  Riccardo Scattolini,et al.  Regional Input-to-State Stability for Nonlinear Model Predictive Control , 2006, IEEE Transactions on Automatic Control.

[45]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[46]  H. Hadwiger,et al.  Minkowskische Addition und Subtraktion beliebiger Punktmengen und die Theoreme von Erhard Schmidt , 1950 .

[47]  Hans Joachim Ferreau,et al.  An online active set strategy to overcome the limitations of explicit MPC , 2008 .

[48]  Darci Odloak,et al.  Extended robust model predictive control , 2004 .

[49]  Mark Cannon,et al.  Robust receding horizon control for linear systems with state and input dependent disturbances , 2015 .

[50]  F. Hohn,et al.  Production Planning Over Time and the Nature of the Expectation and Planning Horizon , 1955 .

[51]  Eugene H. Gover,et al.  Determinants and the volumes of parallelotopes and zonotopes , 2010 .

[52]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..

[53]  Ilya Kolmanovsky,et al.  Maximal output admissible sets for discrete-time systems with disturbance inputs , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[54]  Jay H. Lee,et al.  Use of two-stage optimization in model predictive control of stable and integrating systems , 2000 .

[55]  D. Mayne,et al.  Min-max feedback model predictive control for constrained linear systems , 1998, IEEE Trans. Autom. Control..

[56]  H. Witsenhausen A minimax control problem for sampled linear systems , 1968 .

[57]  Michel Balinski,et al.  On the graph structure of convex polyhedra in n-space , 1961 .

[58]  Andreas Acrivos,et al.  Minimization of a Piecewise Quadratic Function Arising in Production Scheduling , 1960 .

[59]  S. Raković Set Theoretic Methods in Model Predictive Control , 2009 .

[60]  Eduardo F. Camacho,et al.  Min-max Model Predictive Control of Nonlinear Systems: A Unifying Overview on Stability , 2009, Eur. J. Control.

[61]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[62]  Zhong-Ping Jiang,et al.  A converse Lyapunov theorem for discrete-time systems with disturbances , 2002, Syst. Control. Lett..

[63]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[64]  Manfred Morari,et al.  Robust Model Predictive Control , 1987, 1987 American Control Conference.

[65]  Sameer Ralhan,et al.  Robust control of stable linear systems with continuous uncertainty , 2000 .

[66]  Alberto Bemporad,et al.  Min-max control of constrained uncertain discrete-time linear systems , 2003, IEEE Trans. Autom. Control..

[67]  J. H. Leet,et al.  Worst-case formulations of model predictive control for systems with bounded parameters , 1997, Autom..

[68]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[69]  Darci Odloak,et al.  MPC for stable linear systems with model uncertainty , 2003, Autom..

[70]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[71]  M. Diehl,et al.  AN ONLINE ACTIVE SET STRATEGY FOR FAST ADJOINT BASED NONLINEAR MODEL PREDICTIVE CONTROL , 2007 .

[72]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[73]  Hans Bock,et al.  An Online Active Set Strategy for Fast Parametric Quadratic Programming in MPC Applications , 2006 .

[74]  David Q. Mayne,et al.  Optimization in Model Predictive Control , 1995 .

[75]  Stephen J. Wright,et al.  Applying new optimization algorithms to more predictive control , 1996 .

[76]  Mirko Fiacchini,et al.  Invariant Approximations of the Maximal Invariant Set or "Encircling the Square" , 2008 .

[77]  Jay H. Lee,et al.  Min-max predictive control techniques for a linear state-space system with a bounded set of input matrices , 2000, Autom..

[78]  J. Rawlings,et al.  A new robust model predictive control method I: theory and computation , 2004 .

[79]  Lynn E. Garner An outline of projective geometry , 1980 .

[80]  T. Johansen,et al.  Further results on multiparametric quadratic programming , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[81]  M. Best An Algorithm for the Solution of the Parametric Quadratic Programming Problem , 1996 .

[82]  E. Gilbert,et al.  Theory and computation of disturbance invariant sets for discrete-time linear systems , 1998 .

[83]  D. Avis lrs : A Revised Implementation of the Rev rse Search Vertex Enumeration Algorithm , 1998 .

[84]  Gil Kalai A simple way to tell a simple polytope from its graph , 1988, J. Comb. Theory, Ser. A.

[85]  M. Finzel,et al.  Piecewise affine selections for piecewise polyhedral multifunctions and metric projections. , 2000 .

[86]  L. Pontryagin ON THE THEORY OF DIFFERENTIAL GAMES , 1966 .

[87]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[88]  M. Bernhard Introduction to Chaotic Dynamical Systems , 1992 .

[89]  D. Mayne,et al.  Characterization of the solution to a constrained H ∞ optimal control problem , 2005 .

[90]  R. Fletcher Practical Methods of Optimization , 1988 .

[91]  David Q. Mayne,et al.  Robust model predictive control of constrained linear systems with bounded disturbances , 2005, Autom..

[92]  P. Tondel,et al.  Unique polyhedral representations of continuous selections for convex multiparametric quadratic programs , 2005, Proceedings of the 2005, American Control Conference, 2005..