Zero-Error Classical Channel Capacity and Simulation Cost Assisted by Quantum Non-Signalling Correlations

Runyao Duan1, 2, 3, ∗ and Andreas Winter4, 5, † Centre for Quantum Computation and Intelligent Systems (QCIS), Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China UTS-AMSS Joint Research Laboratory for Quantum Computation and Quantum Information Processing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China ICREA & Fı́sica Teòrica: Informació i Fenòmens Quàntics, Universitat Autònoma de Barcelona, ES-08193 Bellaterra (Barcelona), Spain School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom (Dated: 11 September 2014)

[1]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[2]  M. Christandl The Structure of Bipartite Quantum States - Insights from Group Theory and Cryptography , 2006, quant-ph/0604183.

[3]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[4]  Salman Beigi,et al.  Entanglement-assisted zero-error capacity is upper bounded by the Lovasz theta function , 2010, ArXiv.

[5]  J. Preskill,et al.  Causal and localizable quantum operations , 2001, quant-ph/0102043.

[6]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[7]  Debbie W. Leung,et al.  Improving zero-error classical communication with entanglement , 2009, Physical review letters.

[8]  D. Leung,et al.  Entanglement can Increase Asymptotic Rates of Zero-Error Classical Communication over Classical Channels , 2010, Communications in Mathematical Physics.

[9]  R. Werner,et al.  Tema con variazioni: quantum channel capacity , 2003, quant-ph/0311037.

[10]  A. Winter,et al.  (Non-)Contextuality of Physical Theories as an Axiom , 2010, 1010.2163.

[11]  R. Renner,et al.  The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.

[12]  Runyao Duan,et al.  Super-Activation of Zero-Error Capacity of Noisy Quantum Channels , 2009, 0906.2527.

[13]  M. Hayashi Exponents of quantum fixed-length pure-state source coding , 2002, quant-ph/0202002.

[14]  Graeme Smith,et al.  An Extreme Form of Superactivation for Quantum Zero-Error Capacities , 2009, IEEE Transactions on Information Theory.

[15]  M. Horodecki,et al.  Properties of quantum nonsignaling boxes , 2006 .

[16]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[17]  Č. Brukner,et al.  Quantum correlations with no causal order , 2011, Nature Communications.

[18]  G. Chiribella Perfect discrimination of no-signalling channels via quantum superposition of causal structures , 2011, 1109.5154.

[19]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[20]  Andreas J. Winter,et al.  Quantum Reverse Shannon Theorem , 2009, ArXiv.

[21]  Simone Severini,et al.  Zero-Error Communication via Quantum Channels, Noncommutative Graphs, and a Quantum Lovász Number , 2010, IEEE Transactions on Information Theory.

[22]  H. Lo Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity , 1999, quant-ph/9912009.

[23]  A. Harrow Applications of coherent classical communication and the schur transform to quantum information theory , 2005, quant-ph/0512255.

[24]  Debbie W. Leung,et al.  Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations , 2010, IEEE Transactions on Information Theory.

[25]  Runyao Duan,et al.  Entanglement between two uses of a noisy multipartite quantum channel enables perfect transmission of classical information. , 2008, Physical review letters.

[26]  R. Werner,et al.  Semicausal operations are semilocalizable , 2001, quant-ph/0104027.

[27]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[28]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[29]  Simone Severini,et al.  On Zero-Error Communication via Quantum Channels in the Presence of Noiseless Feedback , 2015, IEEE Transactions on Information Theory.

[30]  Simone Severini,et al.  Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovasz theta function , 2010, ArXiv.

[31]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[32]  Runyao Duan,et al.  Perfect distinguishability of quantum operations. , 2009, Physical review letters.

[33]  Andreas J. Winter,et al.  The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels , 2009, IEEE Transactions on Information Theory.

[34]  Jianxin Chen,et al.  Superactivation of the Asymptotic Zero-Error Classical Capacity of a Quantum Channel , 2009, IEEE Transactions on Information Theory.

[35]  Aaron D. Wyner,et al.  The Zero Error Capacity of a Noisy Channel , 1993 .