Qualitative properties of the minimum sum-of-squares clustering problem
暂无分享,去创建一个
Jen-Chih Yao | Nguyen Dong Yen | N. D. Yen | Tran Hung Cuong | Jen-Chih Yao | Trần Hùng Cường | J. Yao
[1] Anil K. Jain. Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..
[2] V. F. Demʹi︠a︡nov,et al. Constructive nonsmooth analysis , 1995 .
[3] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[4] Karl Rihaczek,et al. 1. WHAT IS DATA MINING? , 2019, Data Mining for the Social Sciences.
[5] Meena Mahajan,et al. The Planar k-means Problem is NP-hard I , 2009 .
[6] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[7] Adil M. Bagirov,et al. A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems , 2006, Eur. J. Oper. Res..
[8] Le Thi Hoai An,et al. Minimum Sum-of-Squares Clustering by DC Programming and DCA , 2009, ICIC.
[9] Nikos A. Vlassis,et al. The global k-means clustering algorithm , 2003, Pattern Recognit..
[10] Daniel Aloise,et al. Less is more: basic variable neighborhood search heuristic for balanced minimum sum-of-squares clustering , 2017, Inf. Sci..
[11] Nguyen Dong Yen,et al. On the Problem of Minimizing a Difference of Polyhedral Convex Functions Under Linear Constraints , 2016, J. Optim. Theory Appl..
[12] M. Brusco. A Repetitive Branch-and-Bound Procedure for Minimum Within-Cluster Sums of Squares Partitioning , 2006, Psychometrika.
[13] Adil M. Bagirov,et al. Modified global k-means algorithm for minimum sum-of-squares clustering problems , 2008, Pattern Recognit..
[14] Hanif D. Sherali,et al. A Global Optimization RLT-based Approach for Solving the Hard Clustering Problem , 2005, J. Glob. Optim..
[15] Hanif D. Sherali,et al. Nonlinear Programming - Theory and Algorithms, Third Edition , 2005 .
[16] Adil M. Bagirov,et al. A heuristic algorithm for solving the minimum sum-of-squares clustering problems , 2015, J. Glob. Optim..
[17] Joydeep Ghosh,et al. Data Clustering Algorithms And Applications , 2013 .
[18] A. Rama Mohan Reddy,et al. An efficient k-means clustering filtering algorithm using density based initial cluster centers , 2017, Inf. Sci..
[19] A. Bagirov. AN INCREMENTAL DC ALGORITHM FOR THE MINIMUM SUM-OF-SQUARES CLUSTERING , 2014 .
[20] A. Rubinov,et al. Unsupervised and supervised data classification via nonsmooth and global optimization , 2003 .
[21] Adil M. Bagirov,et al. Fast modified global k-means algorithm for incremental cluster construction , 2011, Pattern Recognit..
[22] Weixin Xie,et al. An Efficient Global K-means Clustering Algorithm , 2011, J. Comput..
[23] Meena Mahajan,et al. The planar k-means problem is NP-hard , 2012, Theor. Comput. Sci..
[24] Hans-Hermann Bock,et al. Clustering and Neural Networks , 1998 .
[25] Pierre Hansen,et al. An Interior Point Algorithm for Minimum Sum-of-Squares Clustering , 1997, SIAM J. Sci. Comput..
[26] Le Thi Hoai An,et al. A new efficient algorithm based on DC programming and DCA for clustering , 2007, J. Glob. Optim..
[27] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[28] T. P. Dinh,et al. Convex analysis approach to d.c. programming: Theory, Algorithm and Applications , 1997 .
[29] Jiming Peng,et al. A Cutting Algorithm for the Minimum Sum-of-Squared Error Clustering , 2005, SDM.
[30] Samir Elhedhli,et al. Nondifferentiable Optimization , 2009, Encyclopedia of Optimization.
[31] Anil K. Jain. Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..
[32] Hanghang Tong,et al. Big data classification , 2014 .
[33] Pierre Hansen,et al. NP-hardness of Euclidean sum-of-squares clustering , 2008, Machine Learning.
[34] D. Edwards. Data Mining: Concepts, Models, Methods, and Algorithms , 2003 .
[35] Nguyen Dong Yen,et al. Quadratic Programming and Affine Variational Inequalities: A Qualitative Study , 2005 .