Variational Inference For Probabilistic Latent Tensor Factorization with KL Divergence

Probabilistic Latent Tensor Factorization (PLTF) is a recently proposed probabilistic framework for modelling multi-way data. Not only the common tensor factorization models but also any arbitrary tensor factorization structure can be realized by the PLTF framework. This paper presents full Bayesian inference via variational Bayes that facilitates more powerful modelling and allows more sophisticated inference on the PLTF framework. We illustrate our approach on model order selection and link prediction.

[1]  Shinichi Nakajima,et al.  Global Analytic Solution for Variational Bayesian Matrix Factorization , 2010, NIPS.

[2]  Paul Lukowicz,et al.  Dealing with Class Skew in Context Recognition , 2006, 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW'06).

[3]  Zoubin Ghahramani,et al.  Propagation Algorithms for Variational Bayesian Learning , 2000, NIPS.

[4]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[5]  Ali Taylan Cemgil,et al.  Bayesian inference in hierarchical non‐negative matrix factorisation models of musical sounds , 2008 .

[6]  Ali Taylan Cemgil,et al.  Probabilistic Latent Tensor Factorization , 2010, LVA/ICA.

[7]  Seungjin Choi,et al.  Bayesian Matrix Co-Factorization: Variational Algorithm and Cramér-Rao Bound , 2011, ECML/PKDD.

[8]  Lise Getoor,et al.  Link mining: a survey , 2005, SKDD.

[9]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[10]  Tamara G. Kolda,et al.  Temporal Link Prediction Using Matrix and Tensor Factorizations , 2010, TKDD.

[11]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[12]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[13]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[14]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[15]  A. Banerjee,et al.  TR 11-026 Probabilistic Tensor Factorization for Tensor Completion , 2011 .

[16]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[17]  Masa-aki Sato,et al.  Online Model Selection Based on the Variational Bayes , 2001, Neural Computation.

[18]  Tamara G. Kolda,et al.  Scalable Tensor Factorizations for Incomplete Data , 2010, ArXiv.

[19]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[20]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[21]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[22]  Xing Xie,et al.  Collaborative Filtering Meets Mobile Recommendation: A User-Centered Approach , 2010, AAAI.

[23]  Ali Taylan Cemgil,et al.  Generalised Coupled Tensor Factorisation , 2011, NIPS.

[24]  Patrick Seemann,et al.  Matrix Factorization Techniques for Recommender Systems , 2014 .

[25]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[26]  Shinichi Nakajima,et al.  Implicit Regularization in Variational Bayesian Matrix Factorization , 2010, ICML.

[27]  S. Amari,et al.  Nonnegative Matrix and Tensor Factorization [Lecture Notes] , 2008, IEEE Signal Processing Magazine.