Disturbances Elimination with Fuzzy Sliding Mode Control for Mobile Robot Trajectory Tracking

The disturbances are the significant issue for the trajectory tracking of mobile robots. Therefore, an adequate control law is presented in this paper and this one is based on Global Terminal Sliding Mode (GTSM) with fuzzy control. This control law aims to guarantee the avoidance of the kinematic disturbances which are injected in the angular and linear velocities, respectively. Moreover, the dynamic model based on exponential reaching law is presented to avoid the uncertainties. The control law provides the asymptotic stability by taking into account the fuzzy rules and Lyapunov theory. Thus, the chattering phenomenon should be avoided. The simulation works prove the robustness of the proposed control law by considering the disturbances function and the robot can follow the desired trajectories.

[1]  Urbano Nunes,et al.  Trajectory planning and sliding-mode control based trajectory-tracking for cybercars , 2007, Integr. Comput. Aided Eng..

[2]  Jang-Myung Lee,et al.  Sliding mode control for trajectory tracking of mobile robot in the RFID sensor space , 2009 .

[3]  Abbas Erfanian,et al.  Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems , 2011, Fuzzy Sets Syst..

[4]  Wuxi Shi,et al.  Adaptive Fuzzy Integral Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robot , 2017 .

[5]  Li-Xin Wang,et al.  Stable adaptive fuzzy control of nonlinear systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[6]  Jang-Myung Lee,et al.  Trajectory Tracking by Terminal Sliding Mode Control for a Three-Wheeled Mobile Robot , 2017, ICIRA.

[7]  J. Keighobadi,et al.  Fuzzy Sliding Mode Control of non-holonomic Wheeled Mobile Robot , 2011, 2011 IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI).

[8]  Ching-Hung Lee,et al.  Tracking control of unicycle-modeled mobile robots using a saturation feedback controller , 2001, IEEE Trans. Control. Syst. Technol..

[9]  Vo Hoang Duy,et al.  Two-Wheeled Welding Mobile Robot for Tracking a Smooth Curved Welding Path Using Adaptive Sliding-Mode Control Technique , 2007 .

[10]  Y. Orlov Discontinuous Systems: Lyapunov Analysis and Robust Synthesis under Uncertainty Conditions , 2008 .

[11]  Ebrahim Samer El'youssef,et al.  Nonholonomic Mobile Robot with Kinematic Disturbances in the Trajectory Tracking: A Variable Structure Controller , 2010 .

[12]  Carlos Canudas de Wit,et al.  Quasi-Continuous Exponential Stabilizers for Nonholonomic Systems , 1996 .

[13]  Jinkun Liu,et al.  Advanced Sliding Mode Control for Mechanical Systems , 2011 .

[14]  Azza El-Sayed Bayoumi Ibrahim Wheeled Mobile Robot Trajectory Tracking using Sliding Mode Control , 2016, J. Comput. Sci..

[15]  Gabriel Ramírez,et al.  A new local path planner for nonholonomic mobile robot navigation in cluttered environments , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[16]  Mohammad Bagher Bannae Sharifian,et al.  Direct Thrust Force and Flux Control of a PM-Linear Synchronous Motor Using Fuzzy Sliding-Mode Observer , 2015 .

[17]  Thinh Cong Tran,et al.  Application of Sensorless Sliding Mode Observer in Control of Induction Motor Drive , 2018 .

[18]  Mohamed Boukattaya,et al.  Adaptive Sliding-Mode Dynamic Control For Path Tracking of Nonholonomic Wheeled Mobile Robot , 2015 .

[19]  Maria Letizia Corradini,et al.  Robust stabilization of a mobile robot violating the nonholonomic constraint via quasi-sliding modes , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[20]  M. Salimifard,et al.  Fuzzy logic & fuzzy sliding mode tracking control of non-holonomic unicycle wheeled mobile robots , 2013, 2013 21st Iranian Conference on Electrical Engineering (ICEE).

[21]  Hao-Chi Chang,et al.  Sliding mode control on electro-mechanical systems , 1999 .

[22]  T. Tsuji,et al.  Terminal sliding mode control of second‐order nonlinear uncertain systems , 1999 .

[23]  Maycol de Alencar,et al.  Trajectory tracking of a wheeled mobile robot with uncertainties and disturbances: proposed adaptive neural control , 2015 .

[24]  Jong-Hwan Kim,et al.  Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots , 1999, IEEE Trans. Robotics Autom..

[25]  V. Utkin Variable structure systems with sliding modes , 1977 .

[27]  Luis T. Aguilar,et al.  Fuzzy Logic Tracking Control for Unicycle Mobile Robots , 2006, Eng. Lett..

[28]  Hong Mei Trajectory Tracking Control of Robot via a Fuzzy Sliding-Mode Controller , 2012 .

[29]  Suk-Kyo Hong,et al.  Decoupling Control of A Class of Underactuated Mechanical Systems Based on Sliding Mode Control , 2006, 2006 SICE-ICASE International Joint Conference.

[30]  Antonella Ferrara,et al.  Higher Order Sliding Mode Controllers With Optimal Reaching , 2009, IEEE Transactions on Automatic Control.

[31]  Avinash Jagarlamudi Trajectory tracking of a nonholonomic mobile robot , 2012 .

[32]  Alireza Alfi,et al.  Balancing and Trajectory Tracking of Two-Wheeled Mobile Robot Using Backstepping Sliding Mode Control: Design and Experiments , 2017, J. Intell. Robotic Syst..

[33]  Warren E. Dixon,et al.  Tracking and Regulation Control of a Mobile Robot System With Kinematic Disturbances: A Variable Structure-Like Approach , 2000 .

[34]  Bo Zhou,et al.  Study on sliding mode trajectory tracking control of mobile robot based on the Kalman filter , 2016, 2016 IEEE International Conference on Information and Automation (ICIA).

[35]  Jean-Paul Laumond,et al.  Dynamic path modification for car-like nonholonomic mobile robots , 1997, Proceedings of International Conference on Robotics and Automation.