Towards Real-time Simulation of Hyperelastic Materials

We present a new method for real-time physics-based simulation supporting many different types of hyperelastic materials. Previous methods such as Position Based or Projective Dynamics are fast, but support only limited selection of materials; even classical materials such as the Neo-Hookean elasticity are not supported. Recently, Xu et al. [2015] introduced new "spline-based materials" which can be easily controlled by artists to achieve desired animation effects. Simulation of these types of materials currently relies on Newton's method, which is slow, even with only one iteration per timestep. In this paper, we show that Projective Dynamics can be interpreted as a quasi-Newton method. This insight enables very efficient simulation of a large class of hyperelastic materials, including the Neo-Hookean, spline-based materials, and others. The quasi-Newton interpretation also allows us to leverage ideas from numerical optimization. In particular, we show that our solver can be further accelerated using L-BFGS updates (Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm). Our final method is typically more than 10 times faster than one iteration of Newton's method without compromising quality. In fact, our result is often more accurate than the result obtained with one iteration of Newton's method. Our method is also easier to implement, implying reduced software development costs.

[1]  Doug L. James,et al.  FastLSM: fast lattice shape matching for robust real-time deformation , 2007, SIGGRAPH 2007.

[2]  Marco Fratarcangeli,et al.  Vivace: a practical gauss-seidel method for stable soft body dynamics , 2016, ACM Trans. Graph..

[3]  Markus H. Gross,et al.  Rig-space physics , 2012, ACM Trans. Graph..

[4]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[5]  Elaine Cohen,et al.  Animation of Deformable Bodies with Quadratic Bézier Finite Elements , 2014, ACM Trans. Graph..

[6]  James F. O'Brien,et al.  Multi-resolution isotropic strain limiting , 2010, SIGGRAPH 2010.

[7]  Huamin Wang,et al.  A chebyshev semi-iterative approach for accelerating projective and position-based dynamics , 2015, ACM Trans. Graph..

[8]  Markus H. Gross,et al.  A versatile and robust model for geometrically complex deformable solids , 2004, Proceedings Computer Graphics International, 2004..

[9]  Marco Fratarcangeli,et al.  Scalable Partitioning for Parallel Position Based Dynamics , 2015, Comput. Graph. Forum.

[10]  Olaf Etzmuß,et al.  A High Performance Solver for the Animation of Deformable Objects using Advanced Numerical Methods , 2001, Comput. Graph. Forum.

[11]  Miguel A. Otaduy,et al.  A Survey on Position‐Based Simulation Methods in Computer Graphics , 2014, Comput. Graph. Forum.

[12]  Theodore Kim,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH Asia '08.

[13]  N. Chentanez,et al.  Solid simulation with oriented particles , 2011, SIGGRAPH 2011.

[14]  Yin Yang,et al.  Descent methods for elastic body simulation on the GPU , 2016, ACM Trans. Graph..

[15]  Ronald Fedkiw,et al.  Energy Conservation for the Simulation of Deformable Bodies , 2012 .

[16]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[17]  Doug L. James,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, SIGGRAPH 2005.

[18]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[19]  Mathieu Desbrun,et al.  Discrete geometric mechanics for variational time integrators , 2006, SIGGRAPH Courses.

[20]  Merlin Nimier-David,et al.  Building and animating user-specific volumetric face rigs , 2016, Symposium on Computer Animation.

[21]  Jessica K. Hodgins,et al.  A finite element method for animating large viscoplastic flow , 2007, ACM Trans. Graph..

[22]  Hujun Bao,et al.  Space-time editing of elastic motion through material optimization and reduction , 2014, ACM Trans. Graph..

[23]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[24]  Jing Li,et al.  Laplacian Damping for Projective Dynamics , 2018, VRIPHYS.

[25]  Rüdiger Westermann,et al.  Workshop on Virtual Reality Interaction and Physical Simulation (2005) a Multigrid Framework for Real-time Simulation of Deformable Volumes , 2022 .

[26]  Tae-Yong Kim,et al.  Air meshes for robust collision handling , 2015, ACM Trans. Graph..

[27]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[28]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[29]  Theodore Kim,et al.  Simulating articulated subspace self-contact , 2014, ACM Trans. Graph..

[30]  Olga Sorkine-Hornung,et al.  Scalable locally injective mappings , 2017, TOGS.

[31]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[32]  Hongyi Xu,et al.  Nonlinear material design using principal stretches , 2015, ACM Trans. Graph..

[33]  Leonard McMillan,et al.  Stable real-time deformations , 2002, SCA '02.

[34]  Ladislav Kavan,et al.  Stabilizing Integrators for Real-Time Physics , 2018, ACM Trans. Graph..

[35]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[36]  Tobias Martin,et al.  Efficient Non‐linear Optimization via Multi‐scale Gradient Filtering , 2013, Comput. Graph. Forum.

[37]  François Faure,et al.  Stable constrained dynamics , 2015, ACM Trans. Graph..

[38]  Klaus-Jürgen Bathe,et al.  Some practical procedures for the solution of nonlinear finite element equations , 1980 .

[39]  Mathieu Desbrun,et al.  Interactive Animation of Structured Deformable Objects , 1999, Graphics Interface.

[40]  P. Schröder,et al.  A simple geometric model for elastic deformations , 2010, SIGGRAPH 2010.

[41]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[42]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[43]  Denis Zorin,et al.  Subspace integration with local deformations , 2013, ACM Trans. Graph..

[44]  John William Neuberger Steepest descent for general systems of linear differential equations in Hilbert space , 1983 .

[45]  R. Landel,et al.  The Strain‐Energy Function of a Hyperelastic Material in Terms of the Extension Ratios , 1967 .

[46]  Jerrold E. Marsden,et al.  Geometric, variational integrators for computer animation , 2006, SCA '06.

[47]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[48]  Jos Stam,et al.  Nucleus: Towards a unified dynamics solver for computer graphics , 2009, 2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[49]  Huamin Wang,et al.  Multi-resolution isotropic strain limiting , 2010, ACM Trans. Graph..

[50]  Andrew Selle,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, SIGGRAPH 2011.

[51]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[52]  Wojciech Matusik,et al.  Data-driven finite elements for geometry and material design , 2015, ACM Trans. Graph..

[53]  Andrew Selle,et al.  To appear in the ACM SIGGRAPH conference proceedings A Mass Spring Model for Hair Simulation , 2008 .

[54]  Jan Bender,et al.  Position-based simulation of continuous materials , 2014, Comput. Graph..

[55]  Doug L. James,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH 2008.

[56]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[57]  Mark Meyer,et al.  Subspace condensation , 2015, ACM Trans. Graph..

[58]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[59]  Olga Sorkine-Hornung,et al.  Interference-aware geometric modeling , 2011, ACM Trans. Graph..

[60]  Tae-Yong Kim,et al.  Strain based dynamics , 2014, SCA '14.

[61]  Tae-Yong Kim,et al.  Unified particle physics for real-time applications , 2014, ACM Trans. Graph..

[62]  James F. O'Brien,et al.  Updated sparse cholesky factors for corotational elastodynamics , 2012, TOGS.

[63]  Nuttapong Chentanez,et al.  Long range attachments - a method to simulate inextensible clothing in computer games , 2012, SCA '12.

[64]  Matthias Müller,et al.  XPBD: position-based simulation of compliant constrained dynamics , 2016, MIG.

[65]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[66]  Yaron Lipman,et al.  Accelerated quadratic proxy for geometric optimization , 2016, ACM Trans. Graph..

[67]  Bailin Deng,et al.  Exploring Local Modifications for Constrained Meshes , 2013, Comput. Graph. Forum.

[68]  Wolfgang Straßer,et al.  Continuum‐based Strain Limiting , 2009, Comput. Graph. Forum.

[69]  Jacob Fish,et al.  An efficient multilevel solution scheme for large scale non-linear systems , 1995 .

[70]  Kwang-Jin Choi,et al.  Stable but responsive cloth , 2002, SIGGRAPH 2002.

[71]  Stephen F. McCormick,et al.  Smoothed aggregation multigrid for cloth simulation , 2015, ACM Trans. Graph..

[72]  M. Teschner,et al.  Meshless deformations based on shape matching , 2005, SIGGRAPH 2005.

[73]  John William Neuberger,et al.  Sobolev gradients and differential equations , 1997 .

[74]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[75]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[76]  Matthias Müller,et al.  Hierarchical Position Based Dynamics , 2008, VRIPHYS.

[77]  Eitan Grinspun,et al.  To appear in the ACM SIGGRAPH conference proceedings Efficient Simulation of Inextensible Cloth , 2007 .

[78]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[79]  James F. O'Brien,et al.  Adaptive anisotropic remeshing for cloth simulation , 2012, ACM Trans. Graph..

[80]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[81]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[82]  宮川翔貴 ”Fast Simulation of Mass‐Spring Systems”の研究報告 , 2016 .

[83]  Martin Servin,et al.  Interactive simulation of elastic deformable materials. , 2006 .

[84]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[85]  Mark Pauly,et al.  Shape‐Up: Shaping Discrete Geometry with Projections , 2012, Comput. Graph. Forum.