Multi-circle Detection on Images

Hough transform (HT) represents the most common method for circle detection, exhibiting robustness and parallel processing. However, HT adversely demands a considerable computational load and large storage. Alternative approaches may include heuristic methods with iterative optimization procedures for detecting multiple circles. In this chapter a new circle detector for image processing is presented. In the approach, the detection process is therefore assumed as a multi-modal problem which allows multiple circle detection through only one optimization procedure. The algorithm uses a combination of three non-collinear edge points as parameters to determine circles candidates. A matching function (nectar amount) determines if such circle candidates (bee-food-sources) are actually present in the image. Guided by the values of such matching function, the set of encoded candidate circles are evolved through the Artificial Bee Colony (ABC) algorithm so the best candidate (global optimum) can be fitted into an actual circle within the edge-only image. An analysis of the incorporated exhausted-sources memory is executed in order to identify potential local optima i.e. other circles. The overall approach yields a fast multiple-circle detector that locates circular shapes delivering sub-pixel accuracy despite complicated conditions such as partial occluded circles, arc segments or noisy images.

[1]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[2]  Marte A. Ramírez-Ortegón,et al.  Circle detection using discrete differential evolution optimization , 2011, Pattern Analysis and Applications.

[3]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[4]  Darren J. Kerbyson,et al.  The Coherent Circle Hough Transform , 1993, BMVC.

[5]  Josef Tvrdík Adaptation in differential evolution: A numerical comparison , 2009, Appl. Soft Comput..

[6]  Pierluigi Crescenzi,et al.  Parallel Simulated Annealing for Shape Detection , 1995, Comput. Vis. Image Underst..

[7]  Ari Visa,et al.  Comparison of Combined Shape Descriptors for Irregular Objects , 1997, BMVC.

[8]  Jerry R. Van Aken An Efficient Ellipse-Drawing Algorithm , 1984, IEEE Computer Graphics and Applications.

[9]  Nurhan Karaboga,et al.  A new design method based on artificial bee colony algorithm for digital IIR filters , 2009, J. Frankl. Inst..

[10]  K. Passino,et al.  Biomimicry of Social Foraging Bacteria for Distributed Optimization: Models, Principles, and Emergent Behaviors , 2002 .

[11]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[12]  J. Kittler,et al.  Comparative study of Hough Transform methods for circle finding , 1990, Image Vis. Comput..

[13]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[14]  J. IIVARINENHelsinki Efficiency of Simple Shape Descriptors , 1997 .

[15]  Martin D. Levine,et al.  Geometric Primitive Extraction Using a Genetic Algorithm , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Ajith Abraham,et al.  Automatic circle detection on digital images with an adaptive bacterial foraging algorithm , 2010, Soft Comput..

[17]  Josef Kittler,et al.  Robust estimation of shape parameters , 1990, BMVC.

[18]  Mark S. Nixon,et al.  Approaches to extending the Hough transform , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[19]  Raúl Enrique Sánchez-Yáñez,et al.  Circle detection on images using genetic algorithms , 2006, Pattern Recognit. Lett..

[20]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[21]  Gary J. Koehler,et al.  New stopping criterion for genetic algorithms , 2000, Eur. J. Oper. Res..

[22]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[23]  Erkki Oja,et al.  A new curve detection method: Randomized Hough transform (RHT) , 1990, Pattern Recognit. Lett..

[24]  Erik Valdemar Cuevas Jiménez,et al.  Circle Detection by Harmony Search Optimization , 2012, J. Intell. Robotic Syst..

[25]  Stephen Marshall,et al.  Convergence Criteria for Genetic Algorithms , 2000, SIAM J. Comput..

[26]  D. Kerbyson,et al.  Using phase to represent radius in the coherent circle Hough transform , 1993 .

[27]  Shiyou Yang,et al.  An artificial bee colony algorithm for inverse problems , 2009 .

[28]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[29]  Doron Shaked,et al.  Deriving Stopping Rules for the Probabilistic Hough Transform by Sequential Analysis , 1996, Comput. Vis. Image Underst..

[30]  Ajith Abraham,et al.  Stability analysis of the reproduction operator in bacterial foraging optimization , 2010, Theor. Comput. Sci..

[31]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[32]  Jack Bresenham,et al.  A linear algorithm for incremental digital display of circular arcs , 1977, CACM.

[33]  Kevin Hapeshi,et al.  A Review of Nature-Inspired Algorithms , 2010 .

[34]  Oscar Cordón,et al.  Performance evaluation of memetic approaches in 3D reconstruction of forensic objects , 2008, Soft Comput..

[35]  T. Poston,et al.  Fuzzy Hough transform , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[36]  Ying-ping Chen,et al.  Analysis of particle interaction in particle swarm optimization , 2010, Theor. Comput. Sci..

[37]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.