Experience rating with Poisson mixtures
暂无分享,去创建一个
[1] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[2] S. Chukova,et al. Multivariate insurance models: An overview , 2012 .
[3] Dimitris Karlis,et al. Bayesian Assessment of the Distribution of Insurance Claim Counts Using Reversible Jump MCMC , 2005 .
[4] B. Carlin,et al. Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .
[5] Petros Dellaportas,et al. On Bayesian model and variable selection using MCMC , 2002, Stat. Comput..
[6] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[7] P. Dellaportas,et al. Bayesian variable selection using the Gibbs sampler , 2000 .
[8] M. Stephens. Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methods , 2000 .
[9] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[10] G. Casella,et al. Mixture models, latent variables and partitioned importance sampling , 2004 .
[11] P. Green,et al. Modelling Heterogeneity With and Without the Dirichlet Process , 2001 .
[12] P. Green,et al. Bayesian Analysis of Poisson Mixtures , 2002 .
[13] Reversible Jump Markov Chain Monte Carlo Method for Parameter Reduction in Claims Reserving , 2012 .
[14] P. Dellaportas,et al. A Simulation Approach to Nonparametric Empirical Bayes Analysis , 2001 .
[15] Ioannis Ntzoufras,et al. Bayesian hypothesis testing for the distribution of insurance claim counts using the Gibbs sampler , 2005, J. Comput. Methods Sci. Eng..
[16] Ragnar Norberg,et al. Experience Rating in Group Life Insurance , 1989 .
[17] Dimitris Karlis,et al. Bayesian multivariate Poisson models for insurance ratemaking , 2011 .
[18] Mario V. Wüthrich,et al. Bayesian prediction of disability insurance frequencies using economic indicators , 2012, Annals of Actuarial Science.
[19] Petros Dellaportas,et al. Bayesian Modelling of Outstanding Liabilities Incorporating Claim Count Uncertainty , 2002 .
[20] George Streftaris,et al. Efficient and accurate approximate Bayesian inference with an application to insurance data , 2008, Comput. Stat. Data Anal..
[21] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[22] Using Mixed Poisson Processes in Connection with Bonus-Malus Systems , 1999, ASTIN Bulletin.
[23] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[24] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[25] O. Cappé,et al. Reversible jump, birth‐and‐death and more general continuous time Markov chain Monte Carlo samplers , 2003 .
[26] Arto Luoma,et al. Bayesian modelling of financial guarantee insurance , 2008 .
[27] P. Dellaportas,et al. Bayesian Analysis of Finite Poisson Mixtures , 2011 .
[28] Chirag Parikh,et al. IDEA cryptographic processor in FPGA , 2005, J. Comput. Methods Sci. Eng..
[29] P. Green,et al. Hidden Markov Models and Disease Mapping , 2002 .
[30] Bayesian over-dispersed Poisson model and the Bornhuetter & Ferguson claims reserving method , 2012, Annals of Actuarial Science.
[31] G. Roberts,et al. Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions , 2003 .
[32] Sylvia Frühwirth-Schnatter,et al. Finite Mixture and Markov Switching Models , 2006 .
[33] Luc Tremblay. Using the Poisson Inverse Gaussian in Bonus-Malus Systems , 1992, ASTIN Bulletin.
[34] Dimitris Karlis,et al. A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking , 2012, Comput. Stat. Data Anal..
[35] Walter R. Gilks,et al. Bayesian model comparison via jump diffusions , 1995 .
[36] Comparison of Some Bayesian Analyses of Heterogeneity in Group Life Insurance , 2000 .
[37] William S. Jewell,et al. Credible Means are exact Bayesian for Exponential Families , 1974, ASTIN Bulletin.