Improved magnetoelectric coupling in Mn and Zn doped CoFe2O4–PbZr0.52Ti0.48O3 particulate composite

In this letter, Mn and Zn simultaneously substituted CoFe2O4, Co0.6Zn0.4Fe1.7Mn0.3O4 has been proposed as magnetostrictive component having the maximum in plane piezomagnetic coupling coefficient (q11+q12∼0.070 ppm/Oe) at a field of H∼300 Oe with appreciable saturation values of longitudinal and transverse magnetostriction coefficients (λ11∼−20 ppm and λ12∼10 ppm). On incorporating this in composite (i.e., (x) PbZr0.52Ti0.48O3−(1−x) Co0.6Zn0.4Fe1.7Mn0.3O4) preparation, maximum magnetoelectric voltage coefficients (αE∼122 mV/cm Oe) was obtained in sample x=0.90 at ac magnetic field of amplitude ∼1 Oe and frequency ∼1 kHz.

[1]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[2]  R. Chatterjee,et al.  Magnetic, dielectric, magnetoelectric, and microstructural studies demonstrating improved magnetoelectric sensitivity in three-phase BaTiO3–CoFe2O4–poly(vinylidene-fluoride) composite , 2009 .

[3]  W. Bai,et al.  Magnetoelectric, pinning and depinning properties in Pb(Zr0.5Ti0.5)O3/Fe3O4 composite films , 2009 .

[4]  P. Joy,et al.  Effect of Sintering Conditions and Microstructure on the Magnetostrictive Properties of Cobalt Ferrite , 2008 .

[5]  Haydn H D Chen,et al.  Effect of CoFe2O4 content on the dielectric and magnetoelectric properties in Pb(ZrTi)O3/CoFe2O4 composite , 2008 .

[6]  I. Dumitru,et al.  The influence of Mn doping level on magnetostriction coefficient of cobalt ferrite , 2007 .

[7]  C. Lo Compositional Dependence of the Magnetomechanical Effect in Substituted Cobalt Ferrite for Magnetoelastic Stress Sensors , 2007, IEEE Transactions on Magnetics.

[8]  S. Priya,et al.  Piezoelectric transformer based ultrahigh sensitivity magnetic field sensor , 2006 .

[9]  T. Ogasawara,et al.  Investigation of Sintered Cobalt-zinc Ferrite Synthesized by Coprecipitation at Different Temperatures: A Relation between Microstructure and Hysteresis Curves , 2006 .

[10]  D. Jiles,et al.  Temperature dependence of magnetic anisotropy in Mn-substituted cobalt ferrite , 2006 .

[11]  P. Joy,et al.  Enhanced magnetostrictive properties of Mn substituted cobalt ferrite Co1.2Fe1.8O4 , 2006 .

[12]  D. Jiles,et al.  Manganese-substituted cobalt ferrite magnetostrictive materials for magnetic stress sensor applications , 2005 .

[13]  K. Krieble,et al.  Mössbauer spectroscopy investigation of Mn-substituted Co-ferrite (CoMnxFe2−xO4) , 2005 .

[14]  C. Nan,et al.  Resonance magnetoelectric effect in bulk composites of lead zirconate titanate and nickel ferrite , 2004 .

[15]  Yuanhua Lin,et al.  Dielectric behavior and magnetoelectric properties of lead zirconate titanate/Co-ferrite particulate composites , 2003 .

[16]  G. Srinivasan,et al.  Magnetoelectric effects in ferrite-lead zirconate titanate layered composites: The influence of zinc substitution in ferrites , 2003 .

[17]  P. Bao,et al.  Internal friction study on low-temperature phase transitions in lead zirconate titanate ferroelectric ceramics , 2003 .

[18]  Jungho Ryu,et al.  Piezoelectric and Magnetoelectric Properties of Lead Zirconate Titanate/Ni-Ferrite Particulate Composites , 2001 .

[19]  B. Boyanov,et al.  High-frequency dielectric behaviour of polycrystalline zinc substituted cobalt ferrites , 1999 .

[20]  L. E. Cross,et al.  A monoclinic ferroelectric phase transition in the Pb(Zr1-xTix)O3 solid solution , 1999, cond-mat/9903007.

[21]  G. Sawatzky,et al.  Mössbauer Study of Several Ferrimagnetic Spinels , 1969 .