Shortest Disjoint S-Paths Via Weighted Linear Matroid Parity
暂无分享,去创建一个
[1] László Lovász,et al. Matroid matching and some applications , 1980, J. Comb. Theory, Ser. B.
[2] Satoru Iwata,et al. A weighted linear matroid parity algorithm , 2017, STOC.
[3] James B. Orlin. A Fast, Simpler Algorithm for the Matroid Parity Problem , 2008, IPCO.
[4] Yusuke Kobayashi,et al. Finding a Shortest Non-zero Path in Group-Labeled Graphs via Permanent Computation , 2016, Algorithmica.
[5] T. Gallai. Maximum-Minimum Sätze und verallgemeinerte Faktoren von Graphen , 1964 .
[6] Andreas Björklund,et al. Shortest Two Disjoint Paths in Polynomial Time , 2014, ICALP.
[7] Paul D. Seymour,et al. Packing Non-Zero A-Paths In Group-Labelled Graphs , 2006, Comb..
[8] Francesco Maffioli,et al. Random Pseudo-Polynomial Algorithms for Exact Matroid Problems , 1992, J. Algorithms.
[9] Hiroshi Hirai,et al. Tree metrics and edge-disjoint $$S$$S-paths , 2014, Math. Program..
[10] Maria Chudnovsky,et al. An algorithm for packing non-zero A-paths in group-labelled graphs , 2008, Comb..
[11] Lap Chi Lau,et al. Algebraic Algorithms for Linear Matroid Parity Problems , 2011, TALG.
[12] Yutaro Yamaguchi,et al. MATHEMATICAL ENGINEERING TECHNICAL REPORTS Packing A-paths in Group-Labelled Graphs via Linear Matroid Parity , 2013 .
[13] Harold N. Gabow,et al. An augmenting path algorithm for linear matroid parity , 1986, Comb..
[14] Alexander V. Karzanov,et al. Multiflows and disjoint paths of minimum total cost , 1997, Math. Program..
[15] Shin-ichi Tanigawa,et al. Packing non-zero A-paths via matroid matching , 2016, Discret. Appl. Math..
[16] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[17] W. Mader. Über die Maximalzahl kreuzungsfreierH-Wege , 1978 .
[18] Hiroshi Hirai,et al. Shortest (A+B)-path packing via hafnian , 2016, ArXiv.
[19] László Lovász,et al. On some combinatorial properties of algebraic matroids , 1987, Comb..