Resource letter: TA-1: Thermoacoustic engines and refrigerators

This Resource Letter provides an annotated guide to some of the literature pertaining to the understanding of thermoacoustic engines and refrigerators. These devices incorporate acoustical components and networks to produce mechanical power or to pump heat, or both, without the use of traditional mechanical contrivances such as pistons, linkages, and valves. To bring some order to this research and the variety of thermoacoustic engines and refrigerators produced over the past two decades, these devices also are classified as stack-based and regenerator-based. The background and motivation for this organizational structure is provided in the introduction.

[1]  R Raspet,et al.  Working gases in thermoacoustic engines. , 1999, The Journal of the Acoustical Society of America.

[2]  Omar M. Knio,et al.  Numerical Simulation of a Thermoacoustic Refrigerator , 1996 .

[3]  G. Swift,et al.  Condensation in a steady-flow thermoacoustic refrigerator. , 2000, The Journal of the Acoustical Society of America.

[4]  Gregory W. Swift,et al.  Thermoacoustic relaxation in a pin-array stack , 1997 .

[5]  C. Hickey,et al.  Theory of inert gas-condensing vapor thermoacoustics: propagation equation. , 2002, The Journal of the Acoustical Society of America.

[6]  Hofler,et al.  Design and construction of a solar-powered, thermoacoustically driven, thermoacoustic refrigerator , 2000, The Journal of the Acoustical Society of America.

[7]  J. Zeegers,et al.  The optimal stack spacing for thermoacoustic refrigeration. , 2002, The Journal of the Acoustical Society of America.

[8]  Peter H. Ceperley,et al.  A pistonless Stirling engine—The traveling wave heat engine , 1979 .

[9]  Ashok Gopinath,et al.  Thermoacoustic streaming in a resonant channel: The time-averaged temperature distribution , 1998 .

[10]  L. Wilen Measurements of thermoacoustic functions for single pores , 1998 .

[11]  G. W. Swift,et al.  Understanding some simple phenomena in thermoacoustics with applications to acoustical heat engines , 1985 .

[12]  G. W. Swift,et al.  FABRICATION AND USE OF PARALLEL PLATE REGENERATORS IN THERMOACOUSTIC ENGINES , 2001 .

[13]  Gregory W. Swift,et al.  Simple harmonic analysis of regenerators , 1996 .

[14]  Richard Raspet,et al.  Experimental study of a radial mode thermoacoustic prime mover , 1999 .

[15]  Daniel A. Russell,et al.  Tabletop thermoacoustic refrigerator for demonstrations , 2002 .

[16]  G. W. Swift,et al.  Experiments with a flow-through thermoacoustic refrigerator , 2000 .

[17]  de Atam Fons Waele,et al.  Thermodynamical aspects of pulse tubes , 1998 .

[18]  Steven L. Garrett,et al.  Thermoacoustic Refrigerator for Space Applications , 1993 .

[19]  T. Gabrielson Radiation from a submerged thermoacoustic source , 1991 .

[20]  G. L. Trigg,et al.  Encyclopedia of Applied Physics , 1994 .

[21]  C. Hickey,et al.  Theory of inert gas-condensing vapor thermoacoustics: transport equations. , 2002, The Journal of the Acoustical Society of America.

[22]  G. W. Swift,et al.  A liquid‐metal magnetohydrodynamic acoustic transducer , 1988 .

[23]  G. W. Swift,et al.  Acoustic streaming in pulse tube refrigerators: tapered pulse tubes , 1997 .

[24]  Scott Backhaus,et al.  Acoustic recovery of lost power in pulse tube refrigerators , 1999 .

[25]  Barton L Smith,et al.  Measuring second-order time-average pressure , 2001 .

[26]  Richard Raspet,et al.  General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections , 1990 .

[27]  G. Swift,et al.  Two-sensor power measurements in lossy ducts. , 1992, The Journal of the Acoustical Society of America.

[28]  G. W. Swift,et al.  Parametrically driven variable‐reluctance generator , 1990 .

[29]  George Mozurkewich,et al.  Heat transfer from transverse tubes adjacent to a thermoacoustic stack , 2001 .

[30]  G. Mozurkewich Time-average temperature distribution in a thermoacoustic stack , 1998 .

[31]  Steven L. Garrett,et al.  Solar/heat‐driven thermoacoustic engine , 1998 .

[32]  L. Wilen,et al.  High-amplitude thermoacoustic effects in a single pore. , 2001, The Journal of the Acoustical Society of America.

[33]  W. Arnott,et al.  Radial wave thermoacoustic engines: Theory and examples for refrigerators and high‐gain narrow‐bandwidth photoacoustic spectrometers , 1996 .

[34]  F. W. Giacobbe,et al.  Estimation of Prandtl numbers in binary mixtures of helium and other noble gases , 1994 .

[35]  David K. Perkins,et al.  THERMOACOUSTIC REFRIGERATOR HEAT EXCHANGERS: DESIGN, ANALYSIS AND FABRICATION , 1994 .

[36]  Ray Scott Wakeland Use of electrodynamic drivers in thermoacoustic refrigerators , 1999 .

[37]  Thomas W. Van Doren,et al.  Nonlinear standing waves in an acoustical resonator , 1998 .

[38]  T. Yazaki,et al.  TRAVELING WAVE THERMOACOUSTIC ENGINE IN A LOOPED TUBE , 1998 .

[39]  G. Swift,et al.  A thermoacoustic Stirling heat engine , 1999, Nature.

[40]  Mark F Hamilton,et al.  Nonlinear two-dimensional model for thermoacoustic engines. , 2002, The Journal of the Acoustical Society of America.

[41]  M. Moldover,et al.  10. Acoustic measurements in gases , 2001 .

[42]  Gregory W. Swift,et al.  Analysis and performance of a large thermoacoustic engine , 1992 .