Contact dynamics of tapping mode atomic force microscopy

A comprehensive model on the dynamics of a tilted tapping mode atomic force microscopy (AFM) is presented, which includes the multimodal analysis, mode coupling mechanisms, adhesion, contact and friction forces induced by the tilting angle. A displacement criterion of contact/impact is proposed to eliminate the assumptions of the previous models such as infinite stiffness of sample or zero impact velocity, which makes the model presented here suitable for more general AFM application scenario, especially for the soft sample case. The AFM tip mass, tip-sample damping, contact forces and intermittent contact can all induce the higher modes participation into the system motion. One degree of freedom or one mode study on the AFM contact dynamics of tapping mode is shown to be inaccurate. The Hertz and Derjaguin-Muller-Toporov models are used for the comparison study of the non-adhesive and adhesive contacts. The intermittent contact and the contact forces are the two major sources of the system nonlinearity. The rich dynamic responses of the system and its sensitivity to the initial conditions are demonstrated by presenting various subharmonic and nonperiodic motions.

[1]  Arvind Raman,et al.  Chaos in atomic force microscopy. , 2006, Physical review letters.

[2]  H. Hölscher,et al.  Determination of Tip-Sample Interaction Potentials by Dynamic Force Spectroscopy , 1999 .

[3]  K. Ravi-Chandar,et al.  On scale dependence in friction: transition from intimate to monolayer-lubricated contact. , 2008, Journal of colloid and interface science.

[4]  Lanhong Dai,et al.  Concentrated-mass cantilever enhances multiple harmonics in tapping-mode atomic force microscopy , 2008 .

[5]  K. D. Murphy,et al.  Static and Dynamic Structural Modeling Analysis of Atomic Force Microscope , 2010 .

[6]  Andreas Engel,et al.  Friction effects on force measurements with an atomic force microscope , 1993 .

[7]  Franz J. Giessibl,et al.  Forces and frequency shifts in atomic-resolution dynamic-force microscopy , 1997 .

[8]  T. Sulzbach,et al.  Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids , 2008, Nanotechnology.

[9]  J. Molenaar,et al.  Dynamics of vibrating atomic force microscopy , 2000 .

[10]  Martin Stark,et al.  Higher-harmonics generation in tapping-mode atomic-force microscopy: Insights into the tip–sample interaction , 2000 .

[11]  Hendrik Hölscher,et al.  Theory of amplitude modulation atomic force microscopy with and without Q-Control , 2007 .

[12]  Arvind Raman,et al.  Probing attractive forces at the nanoscale using higher-harmonic dynamic force microscopy , 2005 .

[13]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[14]  Stephen Jesse,et al.  Dynamic behaviour in piezoresponse force microscopy. , 2006, Nanotechnology.

[15]  J. Gómez‐Herrero,et al.  Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. , 2011, Physical review letters.

[16]  Stephen W. Howell,et al.  Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment , 2002 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Martin Stark,et al.  Inverting dynamic force microscopy: From signals to time-resolved interaction forces , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Ya-Pu Zhao,et al.  Nonlinear behavior for nanoscale electrostatic actuators with Casimir force , 2005 .

[20]  U. Dürig,et al.  Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy , 1999 .

[21]  Resonance frequency analysis for surface-coupled atomic force microscopy cantilever in ambient and liquid environments , 2008 .

[22]  Kevin D. Murphy,et al.  Multi-modal analysis on the intermittent contact dynamics of atomic force microscope , 2011 .

[23]  M. Radmacher,et al.  From molecules to cells: imaging soft samples with the atomic force microscope. , 1992, Science.

[24]  Dachao Li,et al.  Snap-Through and Pull-In Instabilities of an Arch-Shaped Beam Under an Electrostatic Loading , 2007, Journal of Microelectromechanical Systems.

[25]  Pierre-Emmanuel Mazeran,et al.  Force modulation with a scanning force microscope: an analysis , 1997 .

[26]  U. Dürig,et al.  Extracting interaction forces and complementary observables in dynamic probe microscopy , 2000 .

[27]  P. Holmes,et al.  A periodically forced piecewise linear oscillator , 1983 .

[28]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[29]  Yin Zhang Adhesion Map of Spheres: Effects of Curved Contact Interface and Surface Interaction Outside Contact Region , 2011 .

[31]  Jiayong Tian Dynamic Contact Stiffness of Adhesive Hertzian Contact , 2011 .

[32]  Manhee Lee,et al.  General theory of amplitude-modulation atomic force microscopy. , 2006, Physical review letters.

[33]  V. Elings,et al.  Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy , 1993 .

[34]  A. Raman,et al.  Origins of phase contrast in the atomic force microscope in liquids , 2009, Proceedings of the National Academy of Sciences.

[35]  Yakov M. Tseytlin High resonant mass sensor evaluation: An effective method , 2005 .

[36]  Abdullah Atalar,et al.  Enhancing higher harmonics of a tapping cantilever by excitation at a submultiple of its resonance frequency , 2005 .

[37]  J. Barbera,et al.  Contact mechanics , 1999 .

[38]  Jilin Tang,et al.  Higher harmonic atomic force microscopy: imaging of biological membranes in liquid. , 2007, Physical review letters.

[39]  Kevin D. Murphy,et al.  VIBRATION AND STABILITY OF A CRACKED TRANSLATING BEAM , 2000 .

[40]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[41]  F. Wicks,et al.  The contrast mechanism for true atomic resolution by AFM in non-contact mode : quasi-non-contact mode? , 1997 .

[42]  Ya-Pu Zhao,et al.  Pull-in instability study of carbon nanotube tweezers under the influence of van der Waals forces , 2004 .

[43]  Robert W. Stark,et al.  Spectroscopy of the anharmonic cantilever oscillations in tapping-mode atomic-force microscopy , 2000 .

[44]  Franz J. Giessibl,et al.  A direct method to calculate tip–sample forces from frequency shifts in frequency-modulation atomic force microscopy , 2001 .

[45]  G. Briggs,et al.  Nonlinear dynamics of intermittent-contact mode atomic force microscopy , 1997 .

[46]  Molenaar,et al.  Generic behaviour of grazing impact oscillators , 1996 .

[47]  Robert W. Stark,et al.  Fourier transformed atomic force microscopy: tapping mode atomic force microscopy beyond the Hookian approximation , 2000 .

[48]  L. Wang,et al.  Analytical descriptions of the tapping-mode atomic force microscopy response , 1998 .

[49]  Olav Solgaard,et al.  High-resolution imaging of elastic properties using harmonic cantilevers , 2004 .

[50]  Ricardo Garcia,et al.  Identification of nanoscale dissipation processes by dynamic atomic force microscopy. , 2006, Physical review letters.

[51]  Natalia Erina,et al.  High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy , 2008, Nanotechnology.

[52]  Robert W. Stark,et al.  Spectroscopy of higher harmonics in dynamic atomic force microscopy , 2004 .

[53]  Tongxi Yu,et al.  Mechanics of adhesion in MEMS—a review , 2003 .

[54]  Burnham,et al.  Nanosubharmonics: The dynamics of small nonlinear contacts. , 1995, Physical review letters.

[55]  Harald Fuchs,et al.  Conservative and dissipative tip-sample interaction forces probed with dynamic AFM , 1999 .

[56]  Hendrik Hölscher,et al.  Quantitative measurement of tip-sample interactions in amplitude modulation atomic force microscopy , 2006 .

[57]  Yin Zhang Extracting nanobelt mechanical properties from nanoindentation , 2010 .

[58]  Ricardo Garcia,et al.  Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy , 1999 .

[59]  M. Rutland,et al.  Dynamic surface force measurement. I. van der Waals collisions , 1998 .