Twenty years of asymptotic correction for eigenvalue computation

Asymptotic correction, first studied systematically in the 1979 ANU thesis of John Paine, can significantly increase the accuracy and efficiency of finite difference and finite element methods for computing eigenvalues, especially higher eigenvalues, of differential operators. It has proved especially useful for the solution of inverse eigenvalue problems. This paper reviews the impact of this method, and also presents some new numerical results which support a recent conjecture of the author concerning the use of asymptotic correction with Numerov's method for problems with natural boundary conditions.

[1]  J. Paine,et al.  Correction of Sturm-Liouville eigenvalue estimates , 1982 .

[2]  J. T. Marti Small potential corrections for the discrete eigenvalues of the Sturm-Liouville problem , 1990 .

[3]  R. Fabiano,et al.  A finite-difference algorithm for an inverse Sturm-Liouville problem , 1995 .

[4]  Paolo Ghelardoni,et al.  Approximations of Sturm-Liouville eigenvalues using boundary value methods , 1997 .

[5]  John William Paine Numerical approximation of Sturm-Liouville eigenvalues , 1980, Bulletin of the Australian Mathematical Society.

[6]  Alan L. Andrew,et al.  Correction of finite element estimates for Sturm-Liouville eigenvalues , 1986 .

[7]  J. Paine,et al.  A Numerical Method for the Inverse Sturm–Liouville Problem , 1984 .

[8]  D. J. Condon Corrected finite difference eigenvalues of periodic Sturm-Liouville problems , 1999 .

[9]  Moody T. Chu,et al.  Inverse Eigenvalue Problems , 1998, SIAM Rev..

[10]  C. R. Dun Algebraic correction methods for two-dimensional eigenvalue problems , 1995 .

[11]  Frank de Hoog,et al.  Uniform estimation of the eigenvalues of Sturm–Liouville problems , 1980, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[12]  Alan L. Andrew,et al.  Correction of finite difference eigenvalues of periodic Sturm-Liouville problems , 1989, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[13]  Robert S. Anderssen,et al.  On the correction of finite difference eigenvalue approximations for sturm-liouville problems with general boundary conditions , 1984 .

[14]  Alan L. Andrew,et al.  Asymptotic correction of Numerov's eigenvalue estimates with natural boundary conditions , 2000 .

[15]  H. De Meyer,et al.  A modified difference scheme for periodic and semiperiodic Sturm-Liouville problems , 1995 .

[16]  Alan L. Andrew Finite and continuous perturbations of matrix eigenvalues , 1998 .

[17]  H. Meyer,et al.  Accurate computation of higher Sturm-Liouville eigenvalues , 1991 .

[18]  A. Andrew Efficient Computation of Higher Sturm-Liouville Eigenvalues , 1988 .

[19]  M. Porter,et al.  A numerical method for ocean‐acoustic normal modes , 1984 .

[20]  Qingkai Kong,et al.  Dependence of the nth Sturm–Liouville Eigenvalue on the Problem , 1999 .

[21]  J. Pryce Numerical Solution of Sturm-Liouville Problems , 1994 .

[22]  A. Andrew Correction of finite element eigenvalues for problems with natural or periodic boundary conditions , 1988 .

[23]  Alan L. Andrew,et al.  Correction of Numerov's eigenvalue estimates , 1985 .

[24]  F. Natterer A Lanczos type algorithm for inverse Sturm-Liouville problems , 1992 .

[25]  A. Andrew Quadrature errors in finite element eigenvalue computations , 2000, The ANZIAM Journal.