Elasticity mapping of precipitates in polycrystalline materials using atomic force acoustic microscopy

We determined the isotropic indentation modulus of precipitates in cubic materials by using the indentation modulus of the matrix as a reference. This eliminates major practical difficulty of repeatedly switching between a sample and a reference for measurement of indentation modulus using atomic force acoustic microscopy. The methodology has been demonstrated for mapping the elastic stiffness of ∼500nm sized M23C6 precipitates in alloy 625 and ferritic steel with a spatial resolution of ∼50nm.

[1]  Anthony B. Kos,et al.  Nanomechanical mapping with resonance tracking scanned probe microscope , 2007 .

[2]  S. Pathak,et al.  Low cycle fatigue behavior and microstructural evolution of modified 9Cr–1Mo ferritic steel , 2006 .

[3]  H. Ogi,et al.  Elastic-stiffness distribution on dual-phase stainless steel studied by resonance ultrasound microscopy , 2006 .

[4]  S. Seetharaman,et al.  Atomistic study on the site preference and thermodynamic properties for Cr23−xFexC6 , 2005 .

[5]  Patrick M. Kelly,et al.  Edge-to-edge matching and its applications: Part I. Application to the simple HCP/BCC system , 2005 .

[6]  Anish Kumar,et al.  Correlation between ultrasonic shear wave velocity and Poisson’s ratio for isotropic solid materials , 2003 .

[7]  Gerold A. Schneider,et al.  High-resolution characterization of piezoelectric ceramics by ultrasonic scanning force microscopy techniques , 2002 .

[8]  Baldev Raj,et al.  Correlation of microstructure and mechanical properties with ultrasonic velocity in the Ni-based superalloy Inconel 625 , 2002 .

[9]  S. L. Mannan,et al.  Microstructure and mechanical properties of Inconel 625 superalloy , 2001 .

[10]  Dieter Siebörger,et al.  Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases , 2001 .

[11]  Tsuyoshi Mihara,et al.  Nanoscale elasticity measurement with in situ tip shape estimation in atomic force microscopy , 2000 .

[12]  Amelio,et al.  Quantitative determination of contact stiffness using atomic force acoustic microscopy , 2000, Ultrasonics.

[13]  H. Prask,et al.  Calculation of Single-Crystal Elastic Constants for Cubic Crystal Symmetry from Powder Diffraction Data , 1998 .

[14]  Mingxing Zhang,et al.  Crystallography and morphology of Widmanstätten cementite in austenite , 1998 .

[15]  Joost J. Vlassak,et al.  Indentation modulus of elastically anisotropic half spaces , 1993 .

[16]  M. Chaturvedi,et al.  The role of alloying elements in the design of nickel-base superalloys , 1984 .

[17]  C. Stassis,et al.  The Elastic Constants of Ni3Al at 0 and 23.5 °C , 1981, March 16.

[18]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[19]  O. Anderson,et al.  A simplified method for calculating the debye temperature from elastic constants , 1963 .

[20]  Bharat Bhushan,et al.  Applied Scanning Probe Methods Xi , 2006 .

[21]  S. Banerjee,et al.  Carbide Precipitation in Nickel Base Superalloys 718 and 625 and Their Effect on Mechanical Properties , 1997 .